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Time-Dependent Electron Transport Through Nanostructures  
 
Summary 
 
The aim of this project is the description of the transport of electric charge or spin through 
point contacts, quantum dots or quantum wires in the presence of strong correlations.  Here 
we developed numerical approaches based on the density matrix renormalization group 
technique (DMRG) and an analytical approach to junctions of Luttinger liquid wires. First we 
implemented the Kubo response function to determine the linear conductance in the presence 
of strong correlations. Using real-time simulations within time-dependent DMRG (td-DMRG) 
we obtained the finite bias I/V curve and noise correlations for the interacting resonant level 
model and found excellent agreement with analytical calculations based on the 
thermodynamic Bethe ansatz. Recently we obtained the I/V curve of the Kondo model in the 
strong coupling regime. In addition we studied spin charge separation in a transport 
experiment. Finally we extracted exact Kohn-Sham density functional theory (DFT) potentials 
and compared the linear response DMRG results with linear response calculations within the 
DFT Kohn-Sham auxiliary system.  
Following the success of the td-DMRG we are currently simulating the Full Counting 
Statistics (FCS) based on real-time simulations of the cumulant generating function (CGF). 
We are extending the td-DMRG to handle driven system and are testing reflectionless 
impurities to increase the resolution of transport simulations. As a new approach to access 
nonequilibrium states we developed an adiabatic evolution of states. 
In cooperation with Kurt Busch (A1) we have simulated light matter interaction at a two level 
systems embedded into onedimensional waveguiding structures. 
In addition to the above numerical studies, we have developed an analytical method to 
calculate the conductance matrix of a junction of quantum wires modelled as Luttinger 
liquids.  
 
1.  Spin charge separation 

The spin charge separation of a single electron excitation is a prominent example of 
interaction effects in one-dimensional electron systems. The first numerical observation was 
performed with an exact diagonalization approach by Hallberg et al. [1] for a 16 site system. 
Kollath et al. [2] reported a simulation on a 72 site system with hard wall boundary conditions 
and 56 electrons. In [B2.10:6] we showed that with our code it is possible to study spin charge 
separation within the framework of time-dependent DMRG (td-DMRG) for a 1/3 filled 33 site 
Hubbard chain with periodic boundary conditions (PBC) keeping up to 10000 states per 
DMRG block. It turned out that for accurate results we should at least use the order of 2000 
states per block, which is considerably more than applied in [B2.10:7]. We compared 
[B2.10:7] the results of Kollath et al. [2] (KSZ) who employed an adaptive td-DMRG scheme 
combined with a Trotter decomposition [3,4] with results obtained from our code where we 
combined the adaptive scheme with a Krylov based matrix exponential [5]. The system is a 72 
site Hubbard model with an on-site interaction of U=4.0. The perturbation was created by 
applying a Gaussian perturbation to the potential of the up-electrons in the same way as 
described in [5]. By taking up to 5000 states per block we have been able to demonstrate that 
the results obtained by KSZ had an error of more than 100% in the spin sector.  

Having established our code we asked the question whether one should be able to observe the 
spin charge separation in a transport setup [B2.10:12]. We have therefore attached an 
interacting region to non-interacting leads. We then created a single, left moving hole 
excitation in the right lead and let it evolve. At the end of this scattering process of a single 
electronic excitation, one may ask what we end up with. The main question that arises is, 
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whether the outcome will be well defined spin-charge separated wave packets, or if a hole 
will be reconstructed, since we took out one electron of the system in the beginning, or if 
there will emerge an incoherent superposition of many excitations. 

The transport setup displayed in Figure 1 consists of 100 sites, divided into 41 left lead sites, 
29 interacting sites and 30 right lead sites. Upon the ground state we created a single hole 

excitation in the right lead using a Gaussian distribution of annihilation operators with 
momenta k0, of width  and N is the normalization to one.  

 
Figure 1:   Spin charge separation 
in a transport experiment: Spin 
(thick,red) and charge (thin, blue) 
densities were subtracted from the 
background of the ground state 
system without an additional 
excitation. A hole created in the 
right lead (T=0) passes the 
interacting nanostructure (black 
bar) undergoing SCS (T=17). In 
the left lead spin and charge 
densities travel independently with 
equal velocity (T=35,40).  

 
 
With 48 down and 48 up electrons the non-interacting system was at half-filling and the 
interacting system with an onsite Hubbard interaction was kept at a filling of ~0.43 and the 
injected hole had an average momentum of k0 = 0.43π - 2σ, where σ = 0.03. This ensured the 
ability of the hole to tunnel into and out of the interacting region and keeping the transmission 
amplitude maximal. In Figure 1 we display the time evolution of the hole excitation for 
several time steps, where we have subtracted the background of the system without an 
excitation. Additionally, we averaged over Friedel oscillations. The data nicely shows that the 
wave packet undergoes a spin-charge separation and finally one ends up with a charge and a 
spin excitation travelling separately but with equal speed in the left lead. To this end, there is 
no reason for a recombination of spin and charge degrees of freedom to a single hole 
excitation. Nevertheless the outgoing wave packets are well defined and, in principle, the 
charge density and the spin density should be measurable in a time-resolved measurement of a 
spin-polarized charge density.  
In order to identify spin and charge excitations we calculated the spectral function [B2.10:23] 
of a polarized Hubbard model and showed, that one can follow the charge and spin peaks 
while switching on a magnetic field. In the full polarized system the spin peak vanishes, 
which allows for an identification of the spin and charge peaks. 

2. Linear response with momentum leads 

Linear response calculations within DMRG [B2.10:2] provide a method to calculate the 
conductance of a nanostructure attached to leads. As it is based on the exact Kubo formula for 
the linear conductance it is valid for arbitrary interaction. In the DC limit the conductance can 

be expressed in 
terms of two 
different 
correlators,  
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where the positions  are in principle arbitrary. However, the positions should be placed close 
to the nanostructure to minimize finite size effects. In [B2.10:2] we introduced exponentially 
reduced hopping terms close to the boundary of the leads which had been described in real 
space to minimize finite size effects, which in return leads to ill-conditioned linear systems. In 
order to solve these equations, we had to employ scaling sweeps to switch on the damping in 
the leads gradually (see also sec. 7.3). While the method proved to be a valuable tool it turned 
out that it is getting too expensive to study more interesting systems. 

To overcome these difficulties we developed a new scheme [B2.10:8] based on leads 
described in momentum space to overcome the difficulties we encountered in [B2.10:2], for 
details see also [B2.10:6,B2.10:25]. While it is generally accepted that DMRG does not work 
well in a momentum space description due to the large amount of couplings intersecting the 
artificial cut of the system into two parts within DMRG, our transport calculations are 
performed with non-interacting leads. Therefore the number of links intersecting the DMRG 
splitting of the system is vastly reduced.  

Figure 2:  Schematics of the leads 
coupled to the nanostructure. Blue 
dots indicate interacting region (on 
link interaction, V), while green dots 
denote the piece of the leads 
explicitly kept in the iterative DMRG 
scheme. The coupling of the 
nanostructure to its environment is 
controlled by the hopping matrix 
element t'<t.  The left and right boxes 
denote the reservoirs and the energy 
resolution of their states applied in 
our modelling.  

In order to be able to describe 
processes on different energy scales we first couple our nanostructure to a few sites in real 
space to capture local, i.e. high energy, physics. Then we employ a logarithmic discretization 
of the momentum leads to cover a large energy range and finally we use a linear discretization 
of the low energy scale in order to describe low energy transport properties accurately. We 
would like to note that these additional sites on a linear discretization close to the Fermi edge 
are beyond a NRG like description. While they are not needed for a qualitative description, 
they enable us to get very accurate results even close to the resonant tunnelling regime. The 
reason for that lies in the nature of transport properties, where the η in the correlation function 
plays a much more important role than for equilibrium properties. It does not only provide a 
smoothing of the poles, it has to create excitations which then can actually lead to transport. 
For discretization details we refer to [B2.10:25]. 

Here we report on the result for the interacting resonant level model (IRLM) and the natural 
extension of this model to linear chains, defined by the Hamiltonians  
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where c†
ℓ and  cℓ (ck) are the spinless fermionic creation and annihilation operators at site ℓ 

(momentum k), HRS, HMS, and HT denote real space, momentum space, and tunneling between 
real- and momentum space Hamiltonians respectively. The symbols S and SE denote the 
nanostructure and the extended nanostructure (the full real space chain), respectively. The 
indices 1 and ME denote the first and last site in SE. The general setup and the specific values 
of the hopping matrix elements and the interactions are indicated in Fig. 2, and denote 
specifically the interactions on the contact links, V. The momentum dependent coupling  is 
chosen to represent an infinite one-dimensional tight-binding chain if a cosine band  is 
chosen. All energies are measured in units of t=1. 

In Figure 3 we show the linear conductance versus gate potential for a contact hopping of 
t'=0.01 and interaction on the contacts ranging from V=0 to 25. The calculations have been 
performed with 130 sites in total,  real space sites, and 120 momentum space sites. Due to the 
symmetry of the band we used a discretization that is symmetric at the Fermi level, and 
applied an identical discretization scheme to both leads. To represent the ‘large’ energy span 
in the band we used 20 logarithmically scaled sites, and thereafter used 10 linearly spaced 
sites to represent the low energy scale correctly. In the DMRG calculations presented we used 
at least 1300 states per block and 10 finite lattice sweeps. 

The data demonstrates a strong increase of the resonance width due to interaction up to a 
factor of ten. The increase of the resonance width due to interaction on the contact is in 
contrast to the reduction of conductance due to interaction on nanostructures, see [B2.10:8]. 
Once interaction is larger than the Fermi velocity the resonance width gets strongly reduced. 
The results also show that we can now resolve a resonance width of the order of 0.0001. We 
would like to note that this scheme is not restricted to single impurity models and that it also 
works for extended nanostructures as shown in [B2.10:8,B2.10:13]. We have applied this 
approach to the Single Impurity Anderson model with ferromagnetic leads [B2.10:19] and to 
the transport through ring structures. 

Figure 3:  Linear conductance versus gate 

potential, μg, for the interacting resonant 

level model for t'=0.01 and a interaction, 
V, on the contacts ranging from zero to 
25. To each set of DMRG data a 
Lorentzian of half width 2w has been 
added as a guide to the eye. The leads are 
described with a cosine band such that the 
Fermi velocity is 2t. In contrast to intradot 
interaction the interaction on the contacts 
enhances the conductance and shows a 
non monotonic behavior versus contact 
interaction.  
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3.  Differential conductance and shot noise in the interacting resonant level model 

 

The major problem in non-equilibrium dynamics consists in the fact that the stationary 
Schrödinger equation is replaced by the time-dependent Schrödinger equation. Therefore an 
eigenvalue problem is replaced by a boundary problem and one has to take care of the initial 
state. Therefore one has to be very careful by sending all difficult steps to time equal minus 
infinity since at some time one hits the initial state. In our approach the answer to this 
problem is to start with an initial state and to perform the full time integration of the time 
dependent Schrödinger equation via a time evolution operator given by the matrix exponential 
[5]. The method is described in [B2.10:6, 12] and reviewed in [B2.10:27].  

In this project we concentrated on the interacting resonant level model. In this model a single 
level is attached to non-interacting leads via a hybridization amplitude t' and an interaction U 
on the contact links. Mehta und Andrei [6] claim to have solved the non-equilibrium transport 
problem via a scattering state Bethe ansatz. In our previous work using the Kubo approach 
within DMRG [B2.10:2,B2.10:8] we showed that repulsive interaction on the contact link 
leads to an increase of the resonance width of the linear conductance vs. gate voltage up to an 
interaction strength of the order of the Fermi velocity of the leads. Here we are looking at the 
finite bias conductance where the level is on resonance, i.e. we use a particle hole symmetric 
interaction without an additional gate voltage.  

In pushing the calculations to the strong bias voltage regime we realized that one has to be 
careful with the initial state as one can get stuck with an excited state which leads to a voltage 
drop which is slightly smaller than the correct applied value. In addition we realized that the 
adaptive time evolution scheme is not reliable in the regime of strong bias voltages. Therefore 
we developed the following scheme. First we perform a ground state DMRG calculation 
without time evolution to find the correct initial state using up to 3000 states per DMRG 
block. We then perform a full time evolution using the matrix described within the framework 
of Krylov spaces [5]. We choose the time frame to be large enough to cover most of the 
transient regime. This step takes typically a week on a quad core node and up to three weeks 
for the 3000 states per block calculation on a 120 site system. Finally we continue with an 

adaptive time evolution to 
cover a larger time frame 
within the quasi stationary 
regime.  

In Fig. 4 we plot the current 
I(t) divided by the applied 
voltage  for a 96 site system 
with a non-interacting 
coupling using t'=0.5. Here 
we used a full time DMRG 
only up to t=5. The small 
symbols correspond to 1000 
states per block, while the 
larger symbols correspond to 
2000 states per block. The 
lines are given by the 
analytical result for the 
noninteracting system for 
infinite tight binding leads. 
The drop of the current 
around time t=48 is related to 

Figure 4: Current I(t) divided by the applied voltage, VSD, vs. time for a 
set of applied source drain voltages.applied source drain voltages. the 
smaller symbols correspond to 1000 states per block, the larger symbols 
to 2000 states per block. Results are from adaptive time sweeps after an 
initial full time DMRG up to t=5. The lines correspond to the exact result 
for infinite leads. The plot shows that for small voltages it is more than 
sufficient to use 1000 states per  DMRG block. For large voltages one 
should use at least 2000 states per block to ensure a quantitative current 
measurement. 



  B2.10   Evers, Schmitteckert,  Wölfle 

 

the back reflection of the wave packets at the end of the leads and corresponds to the transit 
time. For longer time scales we would have to use longer leads. The deviation of the current 
from a straight line after the settling time is related to truncation errors of the adaptive time 
evolution scheme. The sharp drops in this regime are related to a missing renormalization of 
the wave function at the restart of the adaptive time evolution scheme. Actually, due to 
unitarity of the time evolution operator the time dependent wave function should always be 
normalized. However, due to the projective nature of the adaptive time evolution scheme one 
looses weight at each DMRG step.  

While the results are fine in the not too strong voltage regime they also show that one has to 
be very careful in the large voltage regime. Since we are especially interested in the latter 
regime we employed the approach described above and double checked our results by taking 
up to 3000 states per block. Finally we increased the full time DMRG regime to T=10. By 
carefully fitting the current left and right the impurity vs. time T and checking for the  
oscillations, compare [B2.10:6,B2.10:27], in the quasi stationary regime we obtain the results 
displayed in Figure 5 for a hybridization of t'=0.5 [B2.10:11]. The red line shows the 
analytical result including the energy dependent transmission due to the cosine band. The red 
plusses (crosses) are obtained by fitting the current left (right) of the impurity. The results 
show that calculations using 2000 states per block reproduce the analytical result even in the 
large bias regime. Note that the units are given by the hopping elements of the tight binding 
leads leading to a band width of 4t. The results are done for M=96 sites and 48 fermions using 

2000 states per block if not stated otherwise in the legend.  

 
Figure 5: I/V curve for the interacting resonant level model for different values of the on-link 
interaction U, and system sizes M. JL (JR) is the current extracted from a measurement on the left 
(right) contact link. The red line is the exact scattering result for the noninteracing system with 
infinite leads. The other lines are guides to the eye. In agreement with our Kubo calculations the 
current is enhanced by not too strong repulsive interaction in the low voltage regime. While for 
large voltages there is a negative differential conductance regime for repulsive interaction.  
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By switching on interaction one sees that the system still displays a conductance  for small 
voltage in agreement with our Kubo calculations. For U=0.3 there is a slight enhancement in 
the current as compared to the noninteracting case, which is even stronger for U=1.0. For 
larger interaction, U=5,10 we do not see a corresponding enhancement, i.e. the resonance 
width is now reduced. Most strikingly the U1.0 results show a clear negative differential 
conductance, i.e. the current gets reduced by increasing the voltage. In order to be sure that 
this effect is really given by the system and not by truncation errors of the numerics we 
double checked the results using 3000 states per block for the same system size. In addition 
we increased the system size to 120 sites to check for finite size effects. For the results (blue 
symbols, the line is a guide to the eyes) the comparison shows perfect agreement. The 
negative differential conductance is also very pronounced for strong interaction of U=5.0, 
while for U=10 only a very small differential conductance survives. However, for attractive 

interaction U=-1 the 
negative differential 
conductance is absent.  

While this effect can 
currently not be deduced 
from the scattering state 
Bethe ansatz of Mehta 
and Andrei, there exist a 
special point of 
interaction, namely the 
self dual point, where the 
I/V curve can be obtained 
from the thermodynamic 
Bethe ansatz, see 
[B2.10:11]. Since there 
the leads are replaced by 
continuum leads one can 
only compare results 
between the field theory 
and the lattice model up 
to a regularization scale, 
TB, which depends on the 
regularization scheme. 

In [B2.10:11] we showed 
that the numerics and the analytical calculation show an excellent agreement, i.e. at the self 
dual point, U=2, the data collapses onto a universal curve. We would like to point out that this 
is the first example of non-equilibrium transport through a strongly correlated nanostructure 
for which numerical simulations on a lattice and analytical calculations within a field 
theoretical description show quantitative agreement even far in the nonequilibrium regime.  
Besides the application to the IRLM we have first results for the I/V curve of the Kondo 
model in the strong coupliong regime. 

As a natural extension we looked at the simulation of current-current correlations [B2.10:29-
30] concentrating shot noise, the zero frequency limit of 

Figure 6: Universal I/V curve at the self dual point U=2. The numerical data 
are fitted to the analytical result by a scale TB. To ensure a linear conductance 
of one current and Voltage is rescaled by the same scale. After this rescaling 
all data collapses on the universal I/V curve. In agreement with the analytical 
result  TB scales ~t' 4/3. 
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To this end we first have to reach the steady state regime of our simulations at T0.We then 
have to proceed with two independent time evolutions which will provide us with the time 
resolved noise correlations.  
 

In the following simulations we only used the full td-DMRG [5] without adaptive steps. 
A major difficulty consists in the strong finite size effects of the zero frequency limit. Since 
we have to restrict ourselves to finite systems we are actually evaluating the noise correlations 
at ω~1/M, where M is the  number of sites used in the simulation. In [B2.10:30] We have 
shown that the finite size correction of shot noise for the IRLM are proportional to G2/M in 
the noninteracting case [B2.10:30] and at the self dual point [B2.10:29]. In Fig. 7 we show the  
results of the simulations of the IRLM at the self-dual point for t'=0.3. The 1/M extrapolated 
data show a nice agreement with the analytical result. 

 

4.   Exact Functionals 
for Density Functional 
Theory 

Density functional theory 
(DFT) is currently the 
most applied numerical 
tool to study the 
electronic transport 
through molecules. The 
Hohenberg-Kohn theorem 
[7] of density functional 
theory guarantees that all 
ground state observables 
can be obtained from a 
density functional 

evaluated with the ground state density and that the ground state density minimizes the energy 
functional. In addition, the theorem by Kohn and Sham [8] provides a route to perform DFT 
calculation practically as they showed that there is a one to one correspondence between an 
interacting electron system and an auxiliary free noninteracting Fermi system where one 
replaces the interaction by density potentials, keeping the kinetic term and the local potentials 
of the interacting system. The theorem states that the ground state densities of the fully 
interacting system and that of the Kohn-Sham auxiliary system are identical. In addition the 
Kohn-Sham potentials are unique if the ground state is non-degenerate. While the energy 
functional is therefore known to exist, the explicit form of the functional for interacting 
systems is not known and one has to resort to approximations. In DFT calculations one 

Figure 7: Shot noise of the IRLM at the self dual point.  After performing a 
finite size extrapolation the numerical results agree with the analytical 
results based on the thermodynamic Bethe ansatz [B2.10:29]. 
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typically resorts to a local density approximation which may be improved by gradient 
expansions. One then obtains the eigenfunctions of the Kohn-Sham system and uses those 
levels to calculate transport properties.  

Although this is a widely used approach there are two fundamental problems. The first 
problem relates to the fact, that „the standard approach“ is based on the Landauer scattering 
approach.  It is true, that the longitudinal current response, as it would be calculated with (a 
still illusive) exact time dependent density functional theory (TDFT), yields the exact current 
response via Kubo's formula. Since in addition, also the screened potential can be obtained to 
calculate the voltage drop, the exact conductance may be found this way.  However, there is 
still an ongoing debate about whether the dynamical approach to the quasistationary 
nonequilibrium state may indeed be replaced by the much simpler scattering picture 
[B2.10:5].  

Figure 8:  Comparison of the 
exact conductance (+, dotted line 
as a guide) and the ground state 
DFT approximation (�, dashed 
line) for a five site system (t'=0.2, 
tDot=0.5, U=2.0). For comparison 
the conductance of the 
noninteracting system (U=0) is 
shown as well (long dashed line). 
The solid line indicates the particle 
number  of the molecule. The 
resonances of g are situated at 0, 
1.854, and 2.779 with resonance 
widths of Γ=0.026, 0.015, and 
0.0033.  

One of the issues here, 
relates to the occupation of incoming scattering (Kohn-Sham) states. It is also not clear 
whether a local approximation to the functional describes interaction effects correctly and it is 
an open question whether the Kohn-Sham levels are the correct objects to be used for 
transport calculations. In this project we extended earlier ideas of calculating exact density 
functionals from DMRG by Gunnarsson and Schönhammer [9,10] to inhomogeneous 
systems. In short, since we can calculate the local densities from DMRG and due to the 
uniqueness of the Kohn-Sham potentials, we can start from the exact density and can calculate 
the corresponding Kohn-Sham potentials by a multidimensional steepest descent method. 
Details are explained in [B2.10:9]. We then have the exact DFT Kohn-Sham potentials 
corresponding to our model. The question we now asked is whether by applying the standard 
procedure of using a Kubo formula for the non-interacting Kohn-Sham levels will actually 
give the same conductance as the full Kubo calculation within DMRG, compare Bohr and 
Schmitteckert [B2.10:8]. In this work we coupled a five site nanostructure with a nearest 
neighbor interaction  and a hopping element  with a hopping of t'=0.2 to 5 real space lead sites 
which are then coupled to leads described in energy space, for a detailed description see 
[B2.10:9].  

Even, if indeed a scattering picture based on KS-states of some DFT should be applicable, 
there is still a question about the implications of approximations to the appropriate exchange-
correlation potential. Our recent work suggests, that the self interaction errors in LDA due to 
the neglect of the so called „derivative discontinuity“ impair the study of Coulomb blockade 
in DFT based transport calculations [B2.10:1].  Moreover, the missing long-range nature of 
the potential also implies an overdamping of electronic resonances and therefore an (often 
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very large) overestimate implicit in theoretical conductance values – as is routinely observed 
in all (advanced) transport calculations.  

In Fig. 8 we compare the 
linear conductance obtained 
from the DMRG calculation 
with the one obtained from 
the Kohn-Sham levels. The 
results show a surprising 
agreement close to the 
resonance capturing the shift 
in position (Coulomb 
blockade) and the change in 
the resonance width. Only in 
the tails of the resonances 
there is a significant 
deviation. However, a 
careful analysis of the data 
reveals that the exact Kohn-
Sham functional is non-local. 
For instance it is not single 
valued if the local potentials 
are plotted against the local 
densities. In addition, a plot 
of the Kohn-Sham potential 

for the real-space sites vs. gate voltage shows that the exact functional contains jumps in the 
potentials at the resonances as displayed in Fig. 9. There we plot the Kohn-Sham potential vs. 
the applied gate voltage for the ten real space sites. The increase of the Kohn-Sham potential 
for the x=4,6,8 sites after resonances is responsible for shifting the resonances to large gate 
voltages (Coulomb blockade), while the sharp drop at the resonances is responsible for the 
actual conductance peak.  

In conclusion we have demonstrated that the Kohn-Sham level may indeed be sufficient to 
describe linear transport, at least for well isolated resonances. However one should go beyond 
local density approximations and one has to include discontinuities in the functionals 
describing the molecules.  

 

5. Light matter interaction in 1D waveguiding structures 

In cooperation with Kurt Busch (A1) we simulated the evolution of wave packets consisting 
of a few photons in a onedimensional wave guiding structure [B2.10:20, B2.10:24] interacting 
with a two level system. The most striking result of these simulations is that in contrast to the 
single particle description the few photon wave packet can excite bound states created by the 
coupling of the two level system to the wave guide. After the scattering event we do not only 
get a transmitted and reflected wavepacket, but a partial occupation of a bound state can 
remain, which leads to a partial trapping of the incoming photons at the two level system. 

 

6. Other projects 

In the projects discussed so far the calculations have been restricted to model Hamiltonians. In 
a first step to simulate quantum chemistry type models described by  

Figure 9:  The Kohn-Sham, or Hartree-Exchange-Correlation potential for 
the nano structure an the attached real space sites vs. applied gate voltage.  
Sites 4-8 are part of the interacting region. At gate voltages corresponding 
to resonances in the linear conductance sharp features appear in the Kohn-
Sham potentials. Even in the real space lead sites one gets small, albeit 
nonvanishing Kohn-Sham potentials. 
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we implemented the above Hamiltonian with  Vp,q,l,m given by the problem of a two 
dimensional electron gas in a strong magnetic field where the angular degrees of freedom are 
integrated out. For this one has to carefully implement the minus signs appearing from the 
fermionic nature of the electrons. A comparison with an exact diagonalization programme of 
Xin Wan showed that we successfully implemented this Hamiltonian, see Hu, Wan and 
Schmitteckert [B2.10:15]. In cooperation with Karin Fink we are currently developing an 
interface to the quantum chemistry codes used at the INT. 

In [B2.10:10] we discuss the sign of the persistent current of N electrons in one dimensional 
rings. Using a topology argument, we establish lower bounds for the free energy in the 
presence of arbitrary electron-electron interactions and external potentials. Those bounds are 
the counterparts of upper bounds derived by Leggett. Rings with odd (even) numbers of 
polarized electrons are always diamagnetic (paramagnetic). We show that unpolarized 
electrons with N being a multiple of four exhibit either paramagnetic behavior or a super 
conductor like current-phase relation. 

In [B2.10:4] we showed that in fermionic atoms in two different hyperfine states confined in 
optical lattices show strong commensurability effects due to the interplay between the atomic 
density wave ordering and the lattice potential. We show that spatially separated regions of 
commensurable and incommensurable phases can coexist. The commensurability between the 
harmonic trap and the lattice sites can be used to control the amplitude of the atomic density 
waves in the central region of the trap. Recently we extended that work to study dynamics 
within strongly correlated cold atom gases [B2.10:21]. 

 

7. Current projects 

7.1. Full Counting statistics 

Motivated by the success of calculating current and shot noise from time dependent 
simulations we have implemented the the simulation of the cumulant generating function 
(CGF) Z [12,13] 

where similar to the shot noise 
correlations we first evolve 
the system after the voltage 
quench to the quasi-stationary 
regime. Then we switch on a 
counting field χ at time T0 and 
perform a forward evolution 
in time T with a positive 
counting field χ and a 
backward evolution with -χ. 

The  CGF Z(χ,T) has the 
interesting property that the 
first derivative with respect to 
the counting field is 
proprotional to the current, the 
second derivative is 

Figure 10: Extraction of shot noise from time dependent simulations for 
the IRLM at the self dual point by dividing the time derivative of the 
CGF by χ2.  The results are in agreement with the results obtained from 
a direct simulation of the current current simulations and the analytical 
result, provide finite size corrections are taken into account. 
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proportional to shot noise and higher derivatives provider higher cumulants. The extraction of 
shot noise from Z(χ,T) for the IRLM at the self dual point is displayed in Fig. 10. Currently 
we are  performing simulations for large counting fields in order to obtain the complete FCS. 

 

7.2 Adiabatic state evolution 

As a complementary tool to the time evolution we developed a new state evolution scheme 
where we track the adiabatic response 
of a state to an external perturbation. 
As a first example we looked at the 
response of a model of spinless 
fermions in a onedimensional ring, 
where we follow the response to flux 
threatening the ring. In Figure 11 we 
compare the energy and the current of a 
30 site systems of noninteracting 
fermions on a ring obtained from our 
adiabatic state tracking within DMRG 
flux vs. a standard ground state 
calculation. While the ground state 
calculation is periodic in the flux, we 
can track the adiabatic response into the 
metastable region. By switching on 
interactions adiabatically we have now 
access to current carrying states which 
are eigenstates of the system. We 
would like to note that the concept of 
switching on perturbations/interaction 

adiabatically is at the heart of analytical tools based on scattering theory.  

 

7.3 Reflectionless impurities as boundary condition 

One of the major difficulties in simulating correlated quantum systems lies in the restriciton to 
finite systems. In his seminal work on the numerical renormalization group Wilson showed 
that for impurity problems one can model large leads by a rather small tight binding chain 
provided the hopping elements are exponentially decreasing towards the boundary. This 
concept is extended within the DMRG as smooth or damped boundary conditions, where the 
exponentially decreasing region is put at the end of an unperturbed hopping chain. While this 
approach turned out to be successfull for static problems it has the problem that within the 
damped region every link provides a perturbation that creates backscattering, for details see 
the discussion of the NRG tsunami in [B2.10:25]. It is therefore problematic to study systems 
close to resonance as the leads themselves already create reflections.  In order to overcome 
this problem we replaced the exponentially decreasing hopping elements by integrable 
impurities which have a similar property of enhancing the density of states close to the Fermi 
surface. However, due to the construction of the impurities via the Quantum Inverse 
Scattering method, the impurities are reflectionless. Note that this kind of impurities exists 
even in the presence of nearest neighbour interaction and are derived in [11]. In Fig. 12 we 
show that this property of the algebraic Bethe ansatz persist in time dependent simulations, 
where similar to the simulation of the spin-charge separation we send a wave packet through a 
region including the integrable impurities.  

Figure 11: Current and energy of a onedimensional ring of 
spinless fermions  obtained by an adiabatic tracking of the 
response of a flux threadening the ring vs. the ground state. 
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Despite the strong impurity strength, the 
impurities do not create a reflected wave. 
The additional peak appearing for finite 
interaction comes from the splitting of 
the inserted fermion into left and right 
moving excitation of the underlying 
Luttinger liquid. We have applied this 
kind of impurities as a boundary system 
within the embedding method, compare 
[B2.10:10], and have preliminary results 
showing that the integrable impurities 
allow to access narrow conductance 
peaks, where calculations based on 
damped boundary conditions are 
dominated by the reflection of boundary 
scatterer instead of the nanostrucuture of 
interest.   

 

 

 

 

 

 

 

7.4 Driven systems 

We have extended our simulations by the possibility to switch between different Hamiltonians 
which are governing the time evolution. Currently we are testing our implementation by 
studying the parametric resonance of a Luttinger liquid in response to a periodic perturbation. 

 

7.5 Chebychev expansions within DMRG 

We have developed the evaluation of matrix exponentials and resolvents within the 
framework of Chebychev expansions. Instead of evaluating a matrix exponential of a 
resolvent corresponding to a Greens function directly we have implemented a recursive 
evaluation of the orthogonal polynomial, typically using Chebychev polynomials, of an 
Hamiltonian. Based on the moments of the orthogonal polynomials we are able to reconstruct 
the desired function. As a first result we have been able to calculate the spectral function of 
the interacting resonant level model for various interaction strength using the expansion into 
Chebychev polynomials. 

 
8. Transport through quantum wires: Junctions of Luttinger liquids   
 
A number of methods are available to describe electron transport through quantum dots 
coupled to non-interacting leads. The justification for neglecting the interaction in the leads is 
that in a three-dimensional metal the Coulomb interaction is screened and in addition, Fermi 
liquid theory holds, allowing a description in terms of non-interacting quasi-particles. By 
contrast, in truly one-dimensional wires the effect of the interaction is to destroy the Fermi 

 Figure 12: Evolution of a wave packet in a 1D system of 
spinless fermions in the presence of six integrable impurities 
of strength nu=6t in the middle of the system. The line with 
symbols correspond to a reference system without impurities. 
The upper graph corresponds to a noninteracting system, the 
lower to a system with a nearest neighbour interaction of 
U=1t, with t the nearest-neighbour hopping amplitude. 
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liquid state. Conventionally 1d electron systems are described in terms of their bosonic 
excitations, in a procedure called bosonization. However, in situations where the wire is 
attached to (massive) leads, this is not a good starting point. The reason is that electrons 
entering the wire would have to be converted into bosonic excitations, which at the end of the 
wire must combine to give back an electron. In early work [14] an infinite wire has been 
considered. It was found that in the (usual) case of repulsive interaction a barrier has the effect  
of blocking the transport completely,  in the limit T→0. In these works the conductance of the 
ideal Luttinger liquid (no barrier) has been calculated to be given by the Luttinger parameter 
K (in units of the quantum of conductance e2/h), whereas it should be 1 (two-terminal 
conductance). The correct interpretation of this result, in our view, is that in these works the 
screening of the applied field was not taken into account [15].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Conceptually it is much simpler to calculate the conductance in fermionic language. This has 
been done in [16] in a renormalization group treatment for a model of spinless fermions in 
lowest order in the interaction. We have extended this work to all orders in the interaction 
[B2.10:25,26], i.e. we have calculated the RG beta-function to all orders by summing an 
infinite class of diagrams. This is possible in the current algebra representation, which allows 
to organize the perturbation theory in a particularly efficient way [B2.10:26]. As a result we 
find an analytic expression for the conductance, which completely agrees with the scaling 
behavior at low temperature found by many other methods, but in addition has the correct 
high temperature behaviour (Fig. 13). At intermediate temperatures we have found corrections 
to our ladder approximation, which shed a new light on the question of universality of the 
beta-function. Work is in progress to extend our treatment to nonequilibrium. Also, the effect 
of spin will be incorporated in future work. 
 
More recently we have extended this approach to Y-junctions, describing the tunnelling from 
a tip into a quantum wire. We find that the statement one often finds in the literature, that for 
repulsive interaction the system scales to a fixed point with the tip detached and the wire 

Figure 13: Linear conductance of a Luttinger liquid wire with barrier at the special 
interaction strength K=1/2 versus temperature. The “ladder summation” result (red 
curve) becomes exact at low T , but deviates from the exact conformal field theory result 
(multiplied by a factor 2) at intermediate T. The result of including higher order terms 
with coefficient c3 is also shown. 
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being unaffected by the tip (ideal conductor), is not correct. We show that this result is not 
valid in any realistic situation: rather, the three wires will be completely detached in the limit 
of zero temperature [B2.10:27].  Another interesting observation is that the conductance as a 
function of temperature may generically show nonmonotonical behaviour. So far these results 
were derived for weak interaction. An extension to strong interaction, following the approach 
used in the two-terminal case, is possible (work in progress).  
The Luttinger liquid description is  restricted to low energy excitations for which the fermion 
energy spectrum may be linearized. A first extension of this treatment has been formulated in 
[B2.10:28]. 
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