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Theory of Superconducting and Ferromagnetic Heterostructures 
 
Introduction 
Quasiclassical many-body techniques provide a powerful framework for the microscopic 
description of electron transport in solids, in particular for the analysis of interaction and disorder 
effects or of inhomogeneous systems, interfaces, surfaces, and nanostructures. The quasiclassical 
approximation, leading to Boltzmann-Landau transport equations, allows in many cases for a 
complete transport theory. It is suited for problems which do not require atomic resolution but are 
inhomogeneous on a nanoscopic scale. In addition, it covers non-equilibrium effects. Within the 
quasiclassical approximation, when applied to ferromagnets and heterostructures thereof we found 
that we can describe two important cases. The first is the case of weak ferromagnets where the 
exchange splitting between the spin-up and spin-down quasiparticle bands are on the same scale as 
the superconducting energy gap or transition temperature. We found that in this case the important 
ingredients of devices containing superconducting and ferromagnetic parts are domain walls near 
the interfaces between the superconductor and the ferromagnet. The second case, which up to date 
has been studied much less, is the case of strong ferromagnets where the exchange splitting 
between the bands is large compared with the typical superconducting energy scales, reaching the 
order of the Fermi energy. In this case we found that the important physics is the modification of 
the superconducting order near the interfaces. In both cases, for weak or strong ferromagnets 
coupled to superconducting materials, the important new aspects are the presence of long-range 
triplet correlations near the interface. In the case of a weak ferromagnet such correlations are 
induced by domain walls, whereas in the case of strong ferromagnets such correlations are induced 
directly at the interfaces between a singlet superconductor and the ferromagnet.  

We have studied both devices containing weak ferromagnets and strong ferromagnets. In the latter 
case we made predictions, some of which have been confirmed in the meantime, while some are 
still to be tested experimentally. Within the CFN several collaborations with experimental groups 
have emerged, in particular with the Teilprojekt B2.7.  
 
We proceed now with the description of the specific projects. 
 
1. Proximity effect between superconductors and strongly spin-polarized ferromagnets  
Interfaces between materials with different ordered phases present unique opportunities to study the 
competition between the different underlying mechanisms. One example is the interface between a 
singlet superconductor, where Cooper pairing occurs between electrons with opposite spin, and a 
half-metallic ferromagnet, which displays 100% spin polarization. Since these two orders cannot 
coincide one could expect a very short penetration depth of the proximity effect and a strong 
suppression of the Josephson coupling. In an earlier funding period within the project B2.6 we have 
predicted a new type of proximity effect accompanied by a new type of Josephson effect [1]. This 
proximity effect operates in the presence of spin flip centers in the interface region via spin triplet 
pairing correlations at the superconducting side of the interface. Based on these ingredients we 
predicted a Josephson effect in a superconductor-half metal-superconductor heterostructure with a 
decay length of the order of the usual superconducting correlation length. Our predictions have been 
confirmed in a first experiment by the observation of a supercurrent through half-metallic CrO2  [2] 
and very recently in a number of different setups [3].   

Since the materials used in the experiments are not in the ballistic limit, we extended during the 
reporting period our earlier work to include impurity scattering. We could perform calculations 
beyond the usual diffusive approximation, allowing us to bridge the entire range from the ballistic 
to the diffusive limit within a selfconsistent Born approximation. Our results are published in 
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Nature Physics [B2.6:14]. We have suggested a conversion mechanism from spin singlet to spin 
triplet supercurrents in the experiment of the Klapwijk group [2] that is based on electron spin 
precession together with triplet pair rotation at interfaces with broken spin-rotation symmetry. In the 
diffusive limit the triplet supercurrent is dominated by inter-related odd-frequency s-wave and even-
frequency p-wave pairs. In the crossover to the ballistic limit additional symmetry components 
become relevant. The interface region exhibits a superconducting state of mixed-spin pairs with 
highly unusual symmetry properties that opens up new perspectives for exotic Josephson devices. 
 

 

Figure 1. Superconducting pairing correlations of different symmetries in a superconductor/ half-
metallic ferromagnet/superconductor Josephson heterostructure shown in the top left. Triplet 
superconducting correlations are induced by a process that involves the rotation of the quasiparticle 
spin during reflection processes off the interface between superconductor and ferromagnet, as shown 
in the middle picture in the top. As a result, an equal-spin-triplet supercurrent flows in the 
completely polarized ferromagnet, with an unusual temperature dependence of its critical value 
(shown in the lower left). The decomposition of the supercurrent in its symmetry components is 
illustrated in the table. In the diffusive limit, toward the right in the right panel, so-called odd 
frequency s-wave pairing amplitudes are of critical importance. From Ref. [B2.6:14].   

The Josephson junction, shown in Fig. 1 top left, consists of a half metal sandwiched between two 
singlet superconductors. When a phase difference exists between the superconducting order 
parameters an exotic form of Josephson effect occurs: a singlet supercurrent,  jsinglet (blue in Fig. 1), 
is converted to an equal-spin-triplet supercurrent jtriplet (yellow), within an interface layer extending 
for a superconducting coherence length into the electrodes. The equal-spin triplet supercurrent 
flows through the half-metallic material, whereas the singlet part is completely blocked. The sum of 
the singlet and triplet currents is constant, obeying the continuity equation.  

The conversion process between the singlet and equal-spin triplet supercurrents is triggered by two 
important phenomena taking place at the interface: (1) spin mixing provides S=1, m=0 triplet 
correlations near the interface, and (2) breaking of spin-rotation symmetry with respect to the 
magnetization axis M in the half metal enables this m=0 triplet to be rotated into an S=1, m=1 triplet 
amplitude. Both phenomena are required for a non-vanishing Josephson effect. Spin mixing is the 
result of different scattering phase shifts that electrons with opposite spin acquire when scattered 
(reflected or transmitted) from an interface. It results from either a spin polarization of the interface 
potential or a wave-vector mismatch for spin-up and spin-down particles at the two sides of the 
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Figure 1 Conversion between singlet and triplet supercurrents. We consider two
singlet superconductor banks separated by a half-metallic ferromagnetic layer with

magnetization vectorM. Spin-rotation symmetry aroundM is broken at the

interfaces (hatched), characterized by misaligned averaged interface momentsm1

andm2. As a consequence, inside the superconductors within a coherence length

from the interfaces, there is a conversion from a supercurrent of singlet Cooper pairs

(jsinglet, blue line) to a supercurrent of triplet Cooper pairs (jtriplet, green line), as
illustrated by the shading from blue to yellow. Only the triplet supercurrent can

penetrate the half metal.

or transmitted) from an interface8–10. It results from either a
spin polarization of the interface potential, or differences in
the wave-vector mismatches for spin-up and spin-down particles
at either side of the interface, or both. It is a robust and
ubiquitous feature for interfaces involving strongly spin-polarized
ferromagnets. Another, equivalent, way of discussing spin mixing,
shown in Fig. 2a, is in terms of a spin precession around M when
wave packets penetrate the interface region.

Broken spin-rotation symmetry leads to spin-flip processes
at the interfaces. Its origin is more subtle and deserves special
attention. We discuss in the Supplementary Information some
possible origins of misalignment of the interface moments with
respect to the bulk magnetic moment relevant for the material
CrO2. Magnetic materials often exhibit surface order that is
different from the bulk order, possibly with disordered surface
phases. Here, we only assume that the averaged interface magnetic
moment deviates from the direction of the bulk magnetization.
A possible insulating magnetic interface layer is also described by
our theory. The exact microscopic distribution of local moments
at the interface is not important for superconducting phenomena,
because Cooper pairs are of the size of the coherence length ξ, which
is much larger than the atomic scale. It is, however, important
for the effective interface scattering matrix, as it can lead to spin-
flip terms if the distribution of the local-moment directions breaks
spin-rotation symmetry around M.

The two above-mentioned effects, spin mixing and broken
spin-rotation symmetry around M, are interface properties and
lead to the appearance of the long-range m = 1 triplet correlations
in the half metal as seen schematically in Fig. 3. This is in contrast to
the case of a weak ferromagnet coupled to a superconductor, where
without either large-scale inhomogeneities (for example, domain
wall structures near the interfaces) or strongly enhanced interface
magnetism such correlations are negligible.

To quantify the above discussion, we use a simple model
that is formulated in terms of an interface scattering matrix,
which connects incoming to outgoing waves in the asymptotic
regions5. The scattering matrix depends in general on the
following parameters: (1) the total transmission t between the
superconductor and the half metal; (2) the orientation of the
averaged interface magnetic moment, m, with polar angles α and ϕ
as shown in Fig. 2b; (3) two spin-mixing angles, one for reflection
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Figure 2 Spin mixing and broken spin-rotation symmetry around M. a, The
spin-mixing angle ϑ corresponds to the precession of a spin around the

magnetizationmwhen a wave packet penetrates into the classically forbidden

interface region. The spin component alongm acquires a spin-dependent scattering

phase. b, Definition of the polar angles α and ϕ for an interface momentm
misaligned with respect toM.
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Figure 3 Proximity amplitudes induced at superconductor–ferromagnet
interfaces. a, Misaligned spins in the interface region (described by a scattering
matrix) add little to the main effect for weakly polarized ferromagnets, an

out-of-phase oscillation of a singlet and a ↑↓ +↓↑ (m= 0) triplet component in

the ferromagnet. b, For strongly polarized ferromagnets, a considerable m= 0

triplet amplitude is induced in the superconductor by the strong interface spin

polarization. Disordered interface moments rotate this m= 0 into a ↑↑ (m= 1)

triplet amplitude in the ferromagnet, if the averaged interface moment is misaligned

with the bulk magnetization.

(ϑ) and one for transmission (ϑ↑↑). The most general form of the
scattering matrix for the tunnelling limit, apart from irrelevant
spin-independent phases, has the form (see the Supplementary
Information)

Ŝ =




e

i
2 ϑ 0 t↑↑ei(ϑ↑↑+ ϑ

4 )

0 e− i
2 ϑ t↓↑ei(ϑ↓↑− ϑ

4 )

t↑↑e−i(ϑ↑↑− ϑ
4 ) t↓↑e−i(ϑ↓↑+ ϑ

4 ) −1



. (1)

Here, t↑↑ = t cos(α/2) and t↓↑ = t sin(α/2) are transmission
amplitudes from the two superconducting spin bands to
the conducting half-metallic spin-↑ band, and ϑ, ϑ↑↑ and
ϑ↓↑ = π + ϕ − ϑ↑↑ are spin-mixing angles. Each interface j = 1, 2
is characterized by the five parameters tj , αj , ϕj , ϑj and ϑ↑↑j , which
in general can depend on the direction of incoming quasiparticles.
An alternative set is t↑↑j , t↓↑j , ϑj , ϑ↑↑j and ϑ↓↑j . The presence of the
spin-flip term t↓↑eiϑ↓↑ in the scattering matrix, equation (1), is a
direct consequence of the broken spin-rotation symmetry around
M at the interface.
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or transmitted) from an interface8–10. It results from either a
spin polarization of the interface potential, or differences in
the wave-vector mismatches for spin-up and spin-down particles
at either side of the interface, or both. It is a robust and
ubiquitous feature for interfaces involving strongly spin-polarized
ferromagnets. Another, equivalent, way of discussing spin mixing,
shown in Fig. 2a, is in terms of a spin precession around M when
wave packets penetrate the interface region.

Broken spin-rotation symmetry leads to spin-flip processes
at the interfaces. Its origin is more subtle and deserves special
attention. We discuss in the Supplementary Information some
possible origins of misalignment of the interface moments with
respect to the bulk magnetic moment relevant for the material
CrO2. Magnetic materials often exhibit surface order that is
different from the bulk order, possibly with disordered surface
phases. Here, we only assume that the averaged interface magnetic
moment deviates from the direction of the bulk magnetization.
A possible insulating magnetic interface layer is also described by
our theory. The exact microscopic distribution of local moments
at the interface is not important for superconducting phenomena,
because Cooper pairs are of the size of the coherence length ξ, which
is much larger than the atomic scale. It is, however, important
for the effective interface scattering matrix, as it can lead to spin-
flip terms if the distribution of the local-moment directions breaks
spin-rotation symmetry around M.

The two above-mentioned effects, spin mixing and broken
spin-rotation symmetry around M, are interface properties and
lead to the appearance of the long-range m = 1 triplet correlations
in the half metal as seen schematically in Fig. 3. This is in contrast to
the case of a weak ferromagnet coupled to a superconductor, where
without either large-scale inhomogeneities (for example, domain
wall structures near the interfaces) or strongly enhanced interface
magnetism such correlations are negligible.

To quantify the above discussion, we use a simple model
that is formulated in terms of an interface scattering matrix,
which connects incoming to outgoing waves in the asymptotic
regions5. The scattering matrix depends in general on the
following parameters: (1) the total transmission t between the
superconductor and the half metal; (2) the orientation of the
averaged interface magnetic moment, m, with polar angles α and ϕ
as shown in Fig. 2b; (3) two spin-mixing angles, one for reflection
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(ϑ) and one for transmission (ϑ↑↑). The most general form of the
scattering matrix for the tunnelling limit, apart from irrelevant
spin-independent phases, has the form (see the Supplementary
Information)

Ŝ =




e

i
2 ϑ 0 t↑↑ei(ϑ↑↑+ ϑ

4 )

0 e− i
2 ϑ t↓↑ei(ϑ↓↑− ϑ

4 )

t↑↑e−i(ϑ↑↑− ϑ
4 ) t↓↑e−i(ϑ↓↑+ ϑ

4 ) −1



. (1)

Here, t↑↑ = t cos(α/2) and t↓↑ = t sin(α/2) are transmission
amplitudes from the two superconducting spin bands to
the conducting half-metallic spin-↑ band, and ϑ, ϑ↑↑ and
ϑ↓↑ = π + ϕ − ϑ↑↑ are spin-mixing angles. Each interface j = 1, 2
is characterized by the five parameters tj , αj , ϕj , ϑj and ϑ↑↑j , which
in general can depend on the direction of incoming quasiparticles.
An alternative set is t↑↑j , t↓↑j , ϑj , ϑ↑↑j and ϑ↓↑j . The presence of the
spin-flip term t↓↑eiϑ↓↑ in the scattering matrix, equation (1), is a
direct consequence of the broken spin-rotation symmetry around
M at the interface.
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Table 1 The four classes of superconducting correlations following from the Pauli
principle. All four symmetry components are induced in the superconducting
regions next to the interface, but only the ↑↑-triplet ones in the half-metallic
region. The dominating orbital contributions to the supercurrents in the half metal
are shown in the lower two rows (triplet): even-frequency p-wave and f-wave,
and odd-frequency s-wave and d-wave. Wavy lines symbolize the dynamical
nature of the odd-frequency amplitudes.

Spin

Singlet (odd)
Even

Odd

Even

Even

Odd

OddEven

Odd

Triplet (even)

Frequency Momentum

s

p

p

s

d

f

f

d

INDIRECT JOSEPHSON EFFECT

In the following, we calculate the Josephson current through the
junction to leading order in t and ϑ. This approximation is not
essential, but simplifies the following discussion while all important
phenomena are captured. The presence of an m = 0 triplet
amplitude with a magnitude proportional to sinϑ (see equation (2)
below) is accompanied by a suppression of the singlet pairing
amplitudes proportional to sin2(ϑ/2) in the superconductors
near the interface (see Supplementary Information, Table S1), as
illustrated in Fig. 3 (green lines)5,7,8. It leads to corrections to
the singlet order parameter ∆ that are second order in ϑ. Thus,
to leading order, the corresponding suppression of ∆ can be
neglected. It follows that Anderson’s theorem11,12 holds and ∆ is
also insensitive to impurity scattering (note, however, that in the
immediate interface region described by the scattering matrix, the
gap is dramatically suppressed, for example, owing to diffusion
of magnetic moments; this effect is included in our theory). For
simplicity we consider the case of equal gap magnitudes in the two
superconductors, ∆j =|∆|eiχj , for superconductors j =1 and j =2,
see Fig. 1.

Owing to spin mixing at the interfaces, a spin triplet (S = 1,
m = 0) amplitude ft0 j(x) is developed that extends from the
interfaces about a coherence length into each superconductor,

ft0 j(x) = iπ|∆|eiχj sinϑj

|εn|Ψ s
0j
(x)+ΩnΨ a

0j
(x)

Ω 2
n

, (2)

where Ωn = √
ε2

n
+|∆|2. We have separated the influence of the

interfaces from that of the disorder in the bulk materials by
introducing the real functions Ψ s,a

0j
(x). The superscript denotes

symmetric (s) and antisymmetric (a) components with respect to
µ = cos(θp), where θp is the angle between the Fermi velocity
and the x axis. In the clean limit, Ψ a

0j
(x)=−(sgn(µ)/2)e−|x−xj |/ξS |µ|

and Ψ s
0j
(x) = (sgn(εn)/2)e−|x−xj |/ξS |µ|, where ξS = vS/2Ωn and vS

is the Fermi velocity in the superconductor. For an arbitrary
impurity concentration, the Ψ -functions are modified and must be
calculated numerically for each given value of mean free path (see
Supplementary Information, Fig. S1).

The induced m = 0 triplet amplitude derived above, together
with the presence of spin-flip tunnelling amplitudes, leads to an

equal-spin (m = 1) pairing amplitude f↑↑(x) in the half metal. The
singlet component in the superconductor, being invariant under
rotations around any quantization axis, is not directly involved
in the creation of the triplet in the half metal. A picture of an
indirect Josephson effect emerges, therefore, that is mediated by the
appearance of the m = 0 triplet amplitudes in the superconductor.

In the tunnelling limit, it is convenient to split the pairing
amplitude in the half metal into contributions induced at the left
and right interfaces: f↑↑ = f↑↑1 + f↑↑2, with momentum-symmetric
and momentum-antisymmetric components

f
s,a
↑↑j

(x) = 2πiAj|∆|eiχ̄j

|εn|
Ω 2

n

Ψ s,a
j

(x), (3)

where the amplitude is given by

Aj = 2t↑↑j t↓↑j sin

�
ϑj

2

�
= t

2
j
sin(αj)sin

�
ϑj

2

�
, (4)

and the effective phase by

χ̄j = χj − (ϑ↑↑j +ϑ↓↑j) = χj − (π+ϕj). (5)

In equation (3), we have separated the contributions from the
interface scattering and the contributions from the disorder in the
half metal by introducing the (real) functions Ψ s,a

j
.

The Josephson current reads (see also Supplementary
Information, equation (S13))

Jx = −Jc sin(χ̄2 − χ̄1), (6)

where the critical current density is given by

Jc = J0

T

Tc

�

εn >0

|∆|2ε2
n

Ω 4
n

�
µA1A2(Ψ s

2Ψ
a
1 −Ψ s

1Ψ
a
2 )

�
. (7)

Here, the current unit is J0 =4πevHNHTc, NH is the density of states
at the Fermi level in the half metal, e is the electron charge and
�···� =

� 1

0
dµ···.

Equations (4)–(7) describe an exotic Josephson effect in several
respects. Equation (5) is related to the phase dependence of the
Josephson effect and can be tested for example by studying the
magnetic-field dependence of the critical current. For a half
metal, there can be extra phases that lead to shifts of the usual
Fraunhofer pattern7,13. Within our model there are contributions
δϕ = ϕ2 − ϕ1 to the phases that depend on the microscopic
structure of the disordered magnetic moments at the two interfaces.
In particular, if the averaged magnetic interface moments m1

and m2 are non-collinear in the plane perpendicular to M, such
phases arise. The microstructure can be affected for example by
applying a magnetic field that leads to hysteretic shifts δϕ(H)
of the equilibrium positions depending on the magnetic pre-
history. When subtracting the shifts, the junction shows the typical
characteristics of a π-junction14, as revealed by the minus sign in
equation (6). The possibility to manipulate the shifts δϕ with an
external field yields a way to measure the relative orientation of
m1 and m2 at the two interfaces. Finally, the critical Josephson
current is proportional to the sine of the spin-mixing angles ϑj/2,
the transmission probabilities t

2
j

and the sine of the angles αj

between mj and M. This points to a strong sensitivity of the critical
Josephson current to interface properties and is expected to lead to
strong sample-to-sample variations. Note that none of the above
parameters need to be small, such that critical currents of the order
of that for normal junctions are possible. All of these findings are in
agreement with the experiment2.
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Figure 5 Non-monotonic temperature dependence. a, The critical Josephson current Jc has a maximum at a low temperature that for a specific junction length (here
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peak appearing at a temperature below ∼Tc/2 as predicted for
ballistic systems in ref. 5. The origin of the peak is the factor

|∆|2ε2
n/Ω 4

n in equation (7), which results from the odd-frequency
pairing amplitudes on the superconducting sides of the interfaces
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to Jc from higher partial waves (l≥ 2, d-wave, f-wave and so on) are suppressed. In the diffusive limit, the current (black line) is given by a product of s-wave (l= 0) and
p-wave (l= 1) components (blue line). c, For a given mean free path �H, Jc is exponentially suppressed with junction length L. The unit for Jc is J0A1A2/4π. The length unit
is ξ0 = vH/2πTc. We assumed an anisotropy of t proportional to |µ|.

ROLE OF DISORDER

We now proceed with a detailed description of the role of disorder

in the materials. For definiteness, in the remaining discussion we

keep the mean free path in the superconducting banks fixed to

�S = 0.1ξ̃0 with ξ̃0 = vS/2πTc, and vary the mean free path of

the half metal. It is well known that anisotropic superconducting

correlations are sensitive to impurity scattering. Studies of

unconventional superconductivity reveal that superconductivity

disappears at a critical impurity concentration
9,15

. This is however

not the case for the proximity-induced pairing amplitudes studied

here. Figure 4 shows results for the critical Josephson current

as a function of the elastic mean free path, normalized to

ξ0 = vH/2πTc. As shown in Fig. 4a, the critical current is

monotonously suppressed for decreasing mean free path, from the

ballistic (left part of the abscissa in the figure) to the diffusive (right

part) limits. The suppression is exponential in the diffusive limit,

with a crossover taking place at a mean free path �H comparable

with the clean-limit coherence length ξc = vH/2πT .

The critical Josephson current can be rewritten as a

sum of terms, each consisting of products of neighbouring

momentum-symmetry components of the functions Ψ j ≡ AjΨj

in equation (7), that is, Jc = �∞
l=0

Jc;l,l+1, where l = 0,1,2,3 . . .
denotes the s-, p-, d- and f -wave and so on pairing components

(see the Supplementary Information). We have verified (see

Supplementary Information, Fig. S2) that for ballistic systems

the p-wave amplitudes are larger than the s-wave amplitudes

near the interfaces, whereas the opposite holds for diffusive

systems. The amplitudes are tied to each other through the

following general relation between the momentum-antisymmetric

and the momentum-symmetric parts: f a
↑↑ = −sgn(εn)µξH∂x f s

↑↑,

where ξ−1

H
= �−1

H
+ 2|εn|/vH. In the diffusive limit, there is a

further relation, f p-wave

↑↑ = −sgn(εn)�H∂x f s-wave

↑↑ . It follows that the

magnitudes of the amplitudes differ (their ratio depends on the

amount of disorder), whereas the decay lengths of the two are

always identical, crossing over from the ballistic coherence length

ξc = vH/2πT to the diffusive coherence length ξd = √
�Hξc/3.

The first three terms of the partial wave expansion of the critical

current are shown in Fig. 4b. The sum of these contributions (red

dashed line), composed of the s · p (blue), p · d (green) and d · f
(purple) components, already amounts to almost the entire current

(black line). In the diffusive limit, the current is carried almost

exclusively by the product of the even-frequency p-wave and the

odd-frequency s-wave pairing amplitudes (blue). In the crossover

region to ballistic transport there is an onset of contributions from

higher-order partial waves l ≥ 2. It is clear from the figure that for

�H ≥ ξ0 the diffusive Usadel approximation breaks down. Note that

in the half metal, only partial waves compatible with the spin-triplet

combinations of Table 1 are possible, as indicated in Fig. 4b.

Figure 4c shows for several mean free paths the dependence of

the critical current on the junction length L. A rapid exponential

suppression of the effect with junction length is observed in the

diffusive limit, whereas in the moderately disordered region a

considerable effect is expected for junction lengths of up to 5–10

coherence lengths.

Figure 5 shows the influence of disorder on the temperature

dependence of the critical current. We have normalized all Jc(T)
curves to their zero-temperature value. There is a characteristic
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interface, or both. It is a robust and ubiquitous feature for interfaces involving strongly spin-
polarized ferromagnets. Another, equivalent way of discussing spin mixing, shown in Fig. 1 in the 
middle of the top raw, is in terms of a spin precession around the interface magnetization vector 
when wave packets penetrate the interface region.  

We find that a peak in the temperature dependence of the critical current, shown in the lower left 
panel of  Fig. 1, is a robust feature for clean and disordered half metals. In order to connect to recent 
discussions in the community we studied the symmetry properties of the Cooper pairs involved 
[B2.6:14, B2.6:6]. The four symmetry types of Cooper pair allowed by the Pauli exclusion principle 
are listed in the table in Fig. 1. The dependence of the several symmetry components on the 
quasiparticle mean free path is illustrated in Fig. 1, right panel. In moderately disordered half metals 
the supercurrent is carried predominantly by odd-frequency s-wave and d-wave amplitudes, 
multiplied with even-frequency p-wave and f-wave amplitudes. In the diffusive limit, the 
supercurrent is dominated by the product of the s-wave and the p-wave amplitudes. 
The mechanism of the current conversion we proposed in [B2.6:14] leads to a natural explanation of 
several findings of the experiment [2]:  

• a finite Josephson current in the half metal;  
• hysteretic shifts of the equilibrium phase difference over the junction depending on the 

magnetic pre-history;  
• after subtraction of the hysteretic shifts the Josephson junctions involving half metals are π-

junctions;  
• sample-to-sample fluctuations in the magnitude of the critical current.  

In Ref. [B2.6:23] we extended our theory from half-metallic ferromagnets to ferromagnets with 
strong, but not complete spin-polarization, appropriate for most ferromagnetic elements, like Fe, Ni, 
Co. The complications arising in this regime are mainly due to the necessity of matching three 
quasiclassical propagators at the interface, since there exist now a second band in the FM. This first 
required a generalization of the known boundary conditions for the quasiclassical Green’s function, 
which was recently derived by one of us [B2.6:26]. The presence of a minority band in the FM 
leads to important new physical effects. We found that the temperature anomaly predicted for the 
half metallic case is suppressed with decreasing spin-polarization (Fig. 2, left). The interaction of 
the two FM spin-bands at the interfaces via spin-flip scattering entails an exotic current-phase 
relation, if the junction is not in the tunneling limit. It led us to the prediction of a pure spin-
supercurrent in a SC/FM bilayer terminated by a spin-active surface (Fig. 2, right). 
 

 
Figure 2. Supercurrents through strongly spin-polarized ferromagnets. The plot on the left shows 
the disappearance of the temperature anomaly with decreasing spin-polarization P. The plot next to 
it shows the critical current and the normal state resistance of the junction as a function of P. The 
supercurrent is maximal for an intermediate value of P. The sketch shows the spin-supercurrent 
induced in a bilayer structure by spin-active scattering. As shown on the right, this effect vanishes 
both in the half metallic (P=1.0) and in the non-magnetic (P=0) limit. From Ref. [B2.6:23]. 

ized by Fermi momentum ~pF1 and Fermi velocity ~vF1, the
QCGF is obtained from the microscopic one, Ĝ, by
integrating out the components oscillating on the Fermi
wavelength scale !F1 ¼ @=pF1: ĝð ~pF1; ~R; "; tÞ ¼R
d"p#̂3Ĝð ~p; ~R; "; tÞ, where "p ¼ ~vF1ð ~p$ ~pF1Þ. The

QCGF, ĝ, then varies as a function of the spatial coordinate
~R at a scale set by the superconducting coherence length
"0 ¼ @vF1=2$kBTc, and obeys the Eilenberger equation

i@ ~vF1 %r ~Rĝþ ½"#̂3 $ !̂$ ĥ; ĝ( ¼ 0̂; (1)

with normalization condition ĝ2 ¼ $$21̂ [16]. Here, the
hat denotes the 2) 2 Nambu matrix structure in particle-
hole space, and #̂3 is the third Pauli matrix; ĥ includes all
mean field and self-energy terms governing the quasipar-
ticle motion along QC trajectories aligned with ~vF1, and

labeled by ~pF1; !̂ is the SC order parameter.
The exchange field JFM in a SFM is comparable to the

Fermi energy. As opposed to the weak polarization limit
(JFM * EF), this cannot be described by a term $ ~JFM % ~%
(with ~% the vector of Pauli spin matrices) in ĥ of Eq. (1),
because the QC approximation in this case neglects terms
of order J2FM=EF compared to !. In most SCs, this is not
justified for JFM > 0:1EF. However, for sufficiently large

JFM +
ffiffiffiffiffiffiffiffiffiffi
EF!

p
the coherent coupling of the spin bands in

the FM can be disregarded. Consequently, we define
an independent QCGF for each spin band & 2 f2; 3g in
Fig. 1(b): ĝð ~pF&; ~R;";tÞ¼

R
d"p&#̂3Ĝð ~p; ~R;";tÞ, where

"p&¼ ~vF&ð ~p$ ~pF&Þ. The exchange field is incorporated
by the different Fermi velocities ~vF& and momenta ~pF& in
the two spin bands, and does not enter the equation of
motion (1) for the QCGFs. The ĝ are Nambu matrices with
diagonal (g) and off-diagonal (f) components. These com-
ponents are spin scalar, as opposed to the QCGF in the SC
where they form a 2) 2 spin matrix as a result of spin co-
herence. Indeed, the spins of the pair wave function in the
FM are fixed either to j""i [band 2 in Fig. 1(b)] or to j##i
(band 3).

The interface enters the QC theory in the form of effec-
tive boundary conditions [17–19] connecting the incident
and outgoing QCGFs for the three Fermi-surface sheets
& 2 f1; 2; 3g. The boundary conditions are subject to ki-
netic restrictions [20], as illustrated in Fig. 1(b). Note that,
for a SFM, all singlet correlations are destroyed within the
interface region [they decay on the short length scale !J ¼@=ðpF2 $ pF3Þ * @vF2;3=! , "0& [21] ]. The boundary
conditions are formulated in terms of the normal-state
scattering matrix (S matrix) of the interface [19], which
has the general form

Ŝ ¼ ’̂
R̂11

~T12
~T13

~TT
21 r22 r23
~TT
31 r32 r33

2
64

3
75’̂y: (2)

Here, ’̂ is a diagonal matrix with ’̂11 ¼ eið’=2Þ%3 , ’22 ¼
eið’=2Þ, and ’33 ¼ e$ið’=2Þ.

We obtain the reflection and transmission coefficients
from a microscopic calculation. We consider an interface
formed by a thin (-!F) insulating FM layer of thickness d
between the SC and bulk SFM [see Fig. 1(b)], character-
ized by an interface potential VI $ ~JI % ~%. The orientation
of the exchange field ~JI in the interface layer is determined
by angles ' and ’, with ' the angle between ~JI and the
exchange field ~JFM of the bulk SFM [see Fig. 2(b)]. The S
matrix connecting in- and outgoing amplitudes in the bulk
SC and SFM is then obtained by a wave-matching tech-
nique, where the amplitudes in the interface layer are
eliminated. Doing so, we obtain in the tunneling limit an
S matrix of the form R̂11 ¼ eið#=2Þ%3 , ~T12 ¼ ~T21 ¼
ðt2ei#2=2; t02e

$i#2=2ÞT , and ~T13 ¼ ~T31 ¼ ðt03ei#3=2;
t3e

$i#3=2ÞT . The spin mixing # angles in these expressions
[3,14,19] (also called spin-dependent interfacial phase
shifts [22]) and all remaining S matrix parameters are
obtained from a microscopic calculation as outlined above.
As such, they depend on d, VI, ', ’, and the Fermi mo-
menta of the three bands (we assume j ~JIj¼ j ~JFMj). The de-
pendence on the angle ’ is made explicit in Eq. (2), while
the dependence on the angle ' is implicit in the r and t pa-
rameters via t02;3/ sinð'=2Þ, t2;3/ cosð'=2Þ, and r23; r32 /
sin'. In the following we use these tunneling-limit expres-
sions to gain insight into the physics of the problem. The
results shown in the figures, however, are obtained by a full
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FIG. 2 (color online). (a) Josephson junction with spin-active
SC/SFM interfaces formed by magnetized layers. (b) Orientation
of the interface magnetization described by spherical angles '
and’. (c) The quantities #.2 in Eq. (7) vs ~kk for two polarizations
P, and vs P for perpendicular impact (inset). (d) Critical current
Ic vs temperature T for various polarizations P of the SFM layer.
(e) IcRn-product and normal-state resistance RnA as function of
P for T ¼ 0:5Tc, d ¼ !F1, and ðVI $ JIÞ=EF ¼ 10$4 (dotted
line), 0.2 (solid line), 0.5 (dashed line). RnA is in units of
ðe2NF1vF1Þ$1, NF1 being the normal-state SC density of state.
! ¼ 1:76 meV. In all plots: 'L ¼ 'R ¼ $=2, ’L ¼ ’R, L ¼
"0, d ¼ 5!F1, VI $ JI ¼ 0:5EF, pF2 ¼ 1:18pF1, unless stated
otherwise. P is tuned by pF3.
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from processes that transmit one more Cooper pair in one
of the spin bands compared to the other, including single
pair transmission. It is therefore spin dependent in magni-
tude [see Fig. 3(b)] and shows !’ phase shifts with
opposite signs for opposite spins. The relative phase be-
tween the two terms in Eq. (8) leads to surprising measur-
able effects for finite !’ and intermediate P. First, we find
a difference in the positive (Icþ) and negative (Ic") bias
critical charge currents, as shown in Fig. 3(c). This is also
directly visible in Fig. 3(a), where the maximum and mini-
mum current have a different absolute value. Second, we
find a shift of the equilibrium phase !!eq for the charge
current, as shown in Fig. 3(d) (the jump as a function of!’
is associated with multiple local free energy minima). We
note that in the tunneling limit Eq. (8) reduces to I" #
"I0" $ sinð!!þ "!’Þ, and the equilibrium phase shift is
present as long as I0" ! I0#.

Another remarkable consequence of a nonzero !’ is
observed for a setup shown in Fig. 4(a), when a SFM is
coupled via a spin-active interlayer to a single SC on the
left, and is terminated by a magnetic surface on the right.
All quasiparticles are reflected at the surface, leading to a
zero charge current. However, not all of them are reflected
back into their original spin band since spin-flip reflections
[#23 in Eq. (4)] mediate interactions between the two
bands, and, remarkably, a pure spin supercurrent remains.
In this case, both terms in Eq. (8) vanish as they are related
to direct transmission. Instead, the leading term for the spin
supercurrent is of second order in !’, I / sinð2!’Þ,
resulting from the phases picked up when a triplet Cooper
pair reflects at the right interface [24]. The maximal spin
current, defined as Is ¼ max!’Ið!’Þ, is plotted in
Fig. 4(b) as a function of spin polarization. Note that it van-
ishes both for P!0 and P!1, since it requires the pres-
ence of two bands, and is maximum for intermediate P.

This pure spin current can be tuned by an external
microwave field that couples to the magnetization of the
right surface in Fig. 4(a), and thus leads to a time depen-
dent !’ðtÞ. A high degree of control can be achieved by
manufacturing a surface layer using a different magnetic
material, preferably magnetized perpendicular to the bulk
FM, thus optimizing external tunability. As !’ðtÞ acts as a

time dependent superconducting phase, we predict in ad-
dition to a spin accumulation in the FM a measurable ac
spin supercurrent, analogous to the ac charge Josephson
current in a voltage biased junction.
In summary, we have presented a study of heterostruc-

tures between singlet superconductors and strongly spin-
polarized ferromagnets. We have found that the Josephson
effect markedly differs from that for a fully polarized
material or for a ferromagnet with a weak spin band split-
ting. We discussed the importance of the phase shift be-
tween single pair and crossed two-pair transfer processes
that leads to measurable anomalous junction behavior. We
have also found that a pure spin supercurrent is induced in
a strongly polarized ferromagnet coupled to one singlet
superconducting electrode, and have proposed a way of
measuring this effect.
We thank T. Löfwander for stimulating discussions.
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FIG. 4 (color online). (a) Setup with only one SC electrode.
(b) Spin-supercurrent Is vs P for various ðVI " JIÞ=EF ¼ 10"4

(dotted line), 0.2 (solid line), 0.5 (dashed line). RnA refers to the
normal-state resistance of the SC/FM interface. d ¼ $F1; other
parameters as in Fig. 2.
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In another approach [B2.6:16] we extended our theory by describing the dc Josephson effect and 
Andreev bound states in superconducting junctions with a half metal. For sufficiently clean metals 
we provided a complete non-perturbative description of the Josephson current for arbitrary 
transmissions and spin-flip scattering parameters for both interfaces. Our analysis demonstrates that 
both the Josephson current and the Andreev bound states crucially depend on the strength of spin-
flip scattering and show a rich variety of features which can be tested in future experiments. 

Recently, two experimental groups found evidence for a triplet Josephson effect with Co, using 
Holmium resp. a multilayer structure of magnetic materials [3] as spin-active interlayer. We 
therefore believe that our predictions will be an important stimulus for further experimental activity 
in this field. 

 
2. Multiple Andreev reflections in diffusive heterostructures 
The odd-frequency pairing correlations mentioned above play an important role in diffusive 
heterostructures. We have recently studied resonant Andreev processes in a superconductor/normal 
metal bilayer with a spin-active interface for quasiparticles below the Thouless energy of the normal 
metal [B2.6:21]. For spin-inactive interfaces the normal metal exhibits the famous minigap that 
scales with the Thouless energy and with the interface transmission probability. We have found that 
the above-mentioned spin rotation of the quasiparticle spin, when reflecting off an interface, leads 
to dramatic consequences, which are illustrated in Fig. 3. If the value for the spin rotation angle 
exceeds the value for the tunneling probability, singlet correlations are completely suppressed at the 
chemical potential in favor of odd-frequency triplet correlations. This can be seen in Fig. 3 for low 
values of the tunneling probability T0<θN. The local density of states at the top of the bilayer is at 
the same time enhanced in the region where the minigap would occur if the interface would be spin-
inactive. In Ref. [B2.6:28], we have shown that this transition is a robust effect, it prevails in the 
presence of spin-orbit scattering and appears for different limiting cases of the Fermi-surface 
geometry. 

We have presented in Ref. [B2.6:2] a theory of the current-voltage characteristics in diffusive 
superconductor–normal-metal–superconductor junctions. By solving the time-dependent Usadel 
equations we were able to describe the phase coherent transport for arbitrary length of the normal 
wire. We show how the interplay between proximity effect and multiple Andreev reflections gives 
rise to a rich subgap structure in the conductance and how it is revealed in the nonequilibrium 
distribution function. Our main results are that (i) we describe the subgap structure in the 

Pairing Symmetry Conversion by Spin-Active Interfaces
in Magnetic Normal-Metal–Superconductor Junctions

Jacob Linder,1 Takehito Yokoyama,2 Asle Sudbø,1 and Matthias Eschrig3

1Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
2Department of Applied Physics, Nagoya University, Nagoya, 464-8603, Japan

3Institut für Theoretische Festkörperphysik and DFG-Center for Functional Nanostructures, Universität Karlsruhe,
D-76128 Karlsruhe, Germany

(Received 16 September 2008; published 13 March 2009)

We study the proximity-induced superconducting correlations in a normal metal connected to a

superconductor when the interface between them is spin active and the normal metal is ballistic or

diffusive. Remarkably, for any interface spin polarization there is a critical interface resistance, above

which the conventional even-frequency proximity component vanishes completely at the chemical

potential, while the odd-frequency component remains finite. We propose a way to unambiguously

observe the odd-frequency component.
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Superconductivity and superfluidity are hallmarks of the
wavelike character of matter and manifest themselves in
vastly different systems, from ultracold dilute gases via
cold metals and fluids to extremely dense protonic and
neutronic matter. In all of these contexts, the symmetry
of the order parameter is of profound importance. Over the
past decades, the possibility of superconducting order pa-
rameters that change sign under a time-coordinate ex-
change of the two fermions comprising the Cooper pair
has emerged in addition to the by now well studied vari-
eties of orbital symmetries [1–5]. This so-called odd-
frequency superconductivity [6] is distinct from the tradi-
tional even-frequency pairing in the Bardeen-Cooper-
Schrieffer paradigm and may be induced by proximity
effects in hybrid structures of superconductors and mag-
nets [1].

In a broader context, proximity systems offer the pos-
sibility of controlling the physics of competing broken
symmetries. The fundamental heterostructure for study-
ing proximity-induced superconductivity is the
superconductor–normal-metal (SjN) bilayer, where the
normal metal or the interface may have magnetic proper-
ties. Among possible triplet pair correlations, in the diffu-
sive limit odd-frequency pairs are favored [7], whereas in
ballistic hybrid systems both odd- and even-frequency
amplitudes compete [3,4]. As all known superconductors
to date exhibit an even-frequency order parameter, the
observation of proximity-induced effects that are particular
to odd-frequency pairing would be of utmost interest.

There are two major difficulties associated with the
detection of the odd-frequency state in superconductor-
ferromagnet (SjF) bilayers. One is the usually short pene-
tration depth into the ferromagnetic region, limited by the
magnetic coherence length !F, much less than the super-
conducting coherence length !S [1]. Another problem is
that odd-frequency pairs are only well defined when even-

frequency correlations vanish in the ferromagnet. Clear-cut
signatures of the former are therefore accessible only in a
limited parameter regime [8].
The majority of work on superconducting proximity

structures so far has been restricted to the diffusive limit
and spin-inactive interfaces [9]. For a nonmagnetic bilayer,
a minigap appears in the density of states of the normal
metal. It scales with the Thouless energy of the normal
layer and with the transmission probability of the interface.
Such minigap structures are readily accessible experimen-
tally [10]. For a spin-active interface, the transmission
properties of spin- " and spin- # electrons into a metal are
different, and this gives rise to both spin-dependent con-
ductivities and spin-dependent phase shifts at the interface
[11–15]. In this Letter, we show that a spin-active interface
in an SjN bilayer produces clear signatures of purely odd-
frequency triplet pairing amplitudes that can be tested
experimentally.
We consider the system shown in Fig. 1. The supercon-

ductor is conventional (even-frequency s-wave), while the
interface is magnetic. We find that there is a dramatic
change in the nature of proximity correlations when the
spin-dependent phase shifts exceed the tunneling probabil-
ity of the interface. The spin-active interface in an SjN
bilayer causes the even-frequency correlations to vanish at
zero excitation energy, while odd-frequency correlations
appear. At the same time, the minigap, one of the hallmarks

Normal metal
Magnetic interface

Superconductor

STM tip

FIG. 1 (color online). Proposed experiment for observation of
the odd-frequency component in a diffusive NjS junction.
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tunneling limit, this simplifies again, and, provided that
j#Nj> t"t# for all impact angles, the DOS at the Fermi
level is enhanced above its normal-state value Nð0Þ=N0 ¼R
d!j#Nj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#2
N $ ðt"t#Þ2

q
.

In Fig. 4, we show results for the DOS. In Figs. 4(a) and
4(b), we assume the dependence on the impact angle as
above, whereas in Figs. 4(c) and 4(d), we allow tunneling
only in a narrow tunneling cone of 10%. The DOS for the
cases of dominating triplet amplitudes and dominating
singlet amplitudes differ qualitatively. In the case of a
tunneling cone, this difference is most drastic, and a com-
parison with the results above shows that it is very similar
to the diffusive case. In the right panels, where #N ¼ #S ¼
0:2, we demonstrate that for T0 < 0:2 only the odd-
frequency triplet amplitude is present at the chemical
potential, while the singlet amplitude is zero. The corre-
sponding zero-energy DOS is enhanced in this region,
whereas it is reduced in the region when singlet correla-
tions are present at " ¼ 0.

The simplest experimental manifestation of the odd-
frequency component is a zero-energy peak in the DOS
[21–23]. In SjF layers, where this phenomenon has been
discussed, a clear peak at zero energy is often masked by
the presence of singlet correlations fs, which tend to sup-
press the DOS at low energy. This is not so in the system
we consider, provided T0 < j#Nj in the ballistic limit or,
equivalently, GT < jG"j in the diffusive limit. This is ideal
for an observation of the odd-frequency component, man-
ifested as a zero-energy peak in the DOS.

The important factor with regard to isolation of the odd-
frequency correlations at zero energy is the interface. The
even-frequency correlations vanish when the interface
transmission T0 is sufficiently low. The parameters #N

or, equivalently, G" can be increased by increasing the
magnetic polarization of the barrier separating the super-
conducting and normal layers. By fabricating several
samples with progressively increasing strength of magnetic
moment ~! of the barrier, one should be able to observe an
abrupt change at the zero-energy DOS above a certain
strength of ~!. Alternatively, one could alter T0 by varying
the thickness of the insulating region.
In summary, we have investigated the proximity effect in

a SjN bilayer with a spin-active interface. We find that, in
both the ballistic and diffusive limits, the even-frequency
correlations may vanish at zero energy, while odd-
frequency correlations persist. This result is independent
of the specific values for the layer thicknesses and barrier
resistances, indicating that it is a robust and general feature
of spin-active interfaces. Our findings suggest a way of
obtaining unambiguous experimental identification of
superconducting odd-frequency correlations.
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FIG. 4 (color online). (a) DOS as a function of energy at the
top of the normal layer for fixed transmission probability T0 ¼
0:1 and various values of #N ¼ #S. The remaining parameters
are as in Fig. 3. (b) DOS and proximity amplitudes at " ¼ 0 for
#N ¼ #S ¼ 0:2 as a function of T0. In (c) and (d), we show the
results corresponding to (a) and (b) when assuming an (abrupt)
tunneling cone with an opening angle of 10%.

PRL 102, 107008 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

13 MARCH 2009

107008-4

Figure 3. The local density of states on top of a normal metal is enhanced for sufficiently weak 
tunneling probability T0, when the interface is spin active with spin rotation angle θN. At the same 
time, the pairing correlations are pure odd-frequency triplet correlations, ft(0). Only above a critical 
value of T0 singlet correlations fs(0) are present as well. From Ref. [B2.6:21]. 
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conductance for the whole range of lengths from the short-junction limit to the incoherent regime, 
(ii) we reproduce an additional peak above the superconducting gap in the conductance, in 
agreement with experiments, and (iii) we predict the signatures of the proximity effect in the 
distribution function, which can be measured.	
   
 
3. Point-contact Andreev spectroscopy and the role of spin-active scattering 
Since spin-active scattering in the interface region between superconducting and ferromagnetic 
materials turned out to be of crucial importance for the creation of triplet pairing correlations in 
heterostructures, we decided to investigate the mechanisms underlying these effects in more detail. 
As discussed earlier, we identified the spin-rotation effect and spin-flip scattering as the decisive 
ingredients of the long-range triplet proximity effect. It is therefore obvious to ask for the 
magnitude of these effects given a microscopic model of the interface region. For this purpose we 
considered an interface scattering potential on the microscopic scale [B2.6:27] and numerically 
derived the normal state scattering matrix of the interface, which enters the boundary conditions for 
the quasiclassical Green’s function. We found that a ferromagnetic interface region, i.e., a spin-split 
scattering potential, leads naturally to a spin-rotation effect. However, for the usually considered 
box or delta-function potentials, this effect is rather weak, while the more realistic case of a 
scattering potential that is smooth on the interatomic scale leads to a sizable magnitude of the spin 
rotation angle, ϑ (Fig.4). Moreover, we found that due to kinematic constraints for the scattered 
quasiparticles, the Fermi-surface geometry of the bulk materials adjacent to the interface will play 
an important role. 
 

 
Figure 4 Spin-mixing angle and Andreev bound states - a. scattering potential as function of the 
position, b. spin-mixing angle as function of the conserved momentum component (momentum 
parallel to the interface) of the incident quasiparticle for the scattering potentials displayed in a. The 
value of the ferromagnetic exchange field is J=0.7 EF. . The mixing-angle increases as the potential 
becomes smoother. c. and d. spin-mixing angle for a box-potential with a potential width of 0.5 π/λF 
(c.) and 2.0 π/λF (d.) for different values of the exchange field J. The anomalous features in c. are 
related to the Fermi-surface geometry and disappear for an interface in the tunneling limit (d.), e.  
Andreev spectra at zero temperature for the scattering potentials displayed in a. The potential 
becomes smoother from back to front. Andreev bound states emerge due to the spin-mixing and 
move deeper into the energy gap as the spin-mixing angle increases. From Ref. [B2.6:27]. 

Since such interface properties cannot be probed directly, we generalized the standard Blonder-
Tinkham-Klapweijk (BTK)-theory of conductance spectra of metallic superconducting contacts [4] 
to fully account for spin-active scattering and a spin-polarized Fermi-surface. This leads to several 

For definiteness, we consider a potential shape as shown
in Fig. 9, with Gaussian “slopes.” The “smoothness” of the
interface barrier is then controlled by the standard deviation
! of the Gaussian. Hence, we have the spin-dependent po-
tential

U" = !"VI " J/2#e−"z + d#2/!2
z # − d

VI " J/2 − d # z # 0

E$ + "VI " J/2 − E$#e−z2/!2
z % 0.

$ "40#

In the limit of a very smooth potential, one may resort to the
Wentzel-Kramers-Brillouin "WKB# approximation82 to cal-
culate the scattering problem. An interface that complies to
the requirements of WKB would have to be much larger than
the Fermi wavelength however, which is unrealistic. For this
reason we resort to a numerical method for calculating the
scattering problem. We use a recursive Green’s function
technique83 to calculate the single-particle Green’s function
of the interface Hamiltonian and obtain the scattering matrix
from it using the Fisher-Lee relations.84 To study the effect of
the potential shape on the spin-mixing angle, we plot the
angle & in Fig. 10"b# for different values of !. To avoid a
large variation in the interface transmission when varying !,
we keep d+!=0.7'F %see Fig. 10"a#&.

Furthermore, we use E2 ,E3#0 here, i.e., both the FM
bands have a larger Fermi surface than the SC. As we will
see later on, this Fermi-surface geometry and the scattering
constraints it implies can have an important effect on the
shape of the spectra, and in particular, on features which are
related to the spin-mixing effect.

The main result of considering a variation in the potential
shape is however that it has a tremendous effect on the spin-
mixing angle, as clearly seen in Fig. 10"b#. Its magnitude can
exceed for a smooth potential that for a box potential of
similar transmission easily by a factor of 3–4 or more. This
is sufficient to observe some exotic features related to this
effect in the Andreev spectra of point contacts as discussed in
the next section. The physical reason for this is that, unlike in
the box potential case, electrons with opposite spins acquire
a phase difference while they are still propagating, which
implies that a larger mixing phase is not inevitably tied to a
strongly reduced transmission. This can be best seen in the
WKB limit, where the mixing angle is exclusively given by
this dephasing

& = 2'(
−(

z↑
dz p↑"z# − (

−(

z↓
dz p↓"z#) . "41#

Here p↑,↓=*2m"EF−U"# and z↑,↓ are the classical return
points for the respective spin bands "see Fig. 3 for the nota-
tion#. In the intermediate case that we consider here both the
different wave-vector mismatches and the dephasing of
propagating modes will add to the mixing effect. Note that
only the shape on the SC side of the interface matters for
boosting the spin-mixing angle &.

The discussion in terms of scattering-matrix parameters
presented here is flexible enough to be extended, e.g., to
other Fermi surface geometries or adiabatic variation in the
interface magnetization. Furthermore, instead of insulating
interfaces one could consider interfaces where one or even
both channels are conducting. The latter case has been con-
sidered by Béri et al.14

IV. ANDREEV CONDUCTANCE SPECTRA OF SC/FM
POINT CONTACTS

In the remaining part of the paper we discuss Andreev
spectra that result from our model. We use a definition for
the FM’s spin polarization given by

P =
NF2 − NF3

NF2 + NF3
. "42#

For parabolic bands, the density of states is proportional to
the Fermi momentum, NF$) pF$)*EF−E$. We assume
equal effective masses.

The current density in terms of the distribution functions
and coherence functions is given by

j!$ = −
eNF$

2
( d*+v!$ · j*,$,$+, "43#

j*,$ = X$ − x$ − +$
Rx̃$+̃$

A, "44#

where the expression for j*,$ is given by

j*,2 = x-.r2 + AT12.2 + .r23 + AT13.2 − 1/

− x̃-."T21 + AR1#",1T13
! #.2 + ."T21 + AR1#",1T12

! #.2/
"45#

and an analogous expression is obtained for j*,3 by inter-

FIG. 9. "Color online# Sketch of the scattering potential for the
smooth potential model "right# and the here considered Fermi-
surface geometry "left#. The parameters introduced in Eq. "40# are
indicated.

(a) (b)

FIG. 10. "Color online# "a# Shape function of the scattering po-
tential "average between both spin directions# for !=0, . . . ,0.7'F
and !+d=0.7'F, and E2=−0.1EF, and E3=−0.8EF. "b# The spin-
mixing angle & as a function of impact angle for the different po-
tentials plotted in "a#. ! increases from bottom to top.
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!Q† 0

0 1
"Ŝ!Q 0

0 1
" , #36$

where Q is a spin rotation matrix acting on spins in the
superconductor. We describe this procedure in the Appendix.
All the quantities plotted are calculated in this rotated frame,
the point being that otherwise one does not have an unam-
biguous definition of the mixing phases. Naturally, the An-
dreev spectra are invariant under these transformations. We
obtain the scattering matrix by matching wave functions as
described in the Appendix.

In Figs. 4#a$ and 4#b$ we show the spin-mixing angle for
different values of the interface potential width d. The band
minima in the FM are E2=0.1EF and E3=0.9EF, which im-
plies that at k% !0.31kF1 the minority band becomes insulat-
ing and the scattering matrix reduces to a 3"3 matrix. In the
tunneling limit #d#$F /2%$ the spin-mixing angle behaves
as expected: it is approximately given by the value #see Ap-
pendix$

& = 2&arctan! k1

'+
" − arctan! k1

'−
"' , #37$

which approaches zero for grazing impact #k1(0$, and
2)arctan*EF / #U+−EF$−arctan*EF / #U−−EF$+ #(0.29% for
Fig. 4$ for normal impact. Here, k1 is the component of the
wave vector perpendicular to the interface in the supercon-
ductor and '( are the exponential decay factors for the spin-
up/down wave functions in the barrier. For thin #highly trans-
parent$ interfaces the mixing angle & is a more complicated
function of the quasiparticle impact angle. In this regime, &
is predominantly controlled by the Fermi-surface geometry
indicated in Fig. 3. There is a local minimum at k% )kF3 and
for very thin interfaces & is largely enhanced for grazing
impact #d=0.1$F /2% in Fig. 4$. This enhancement can be
understood from the d=0 limit, i.e., the case where the inter-
face barrier is absent. In this case

& = % − 2 arctan! k1

'3
" , #38$

where '3 corresponds to the imaginary wave vector in the
insulating band 3, which controls the exponential decay of
the spin-down wave function into the ferromagnet. In the
particular case we show here, see Fig. 3, k1 takes a finite

value for all trajectories that contribute to the current while
'3 increases monotonously from 0 at k% =kF3(0.31kF1 to
some finite value at k% =kF2. This is because the effective
height of the potential for tunneling into the insulating band
increases with k%. For Fermi-surface geometries with kF1
*kF2 #not shown here$ the wave vector k1 drops to zero for
grazing impact and so does the spin-mixing angle.

In the present case, the situation is complicated by the fact
that we consider both a finite interlayer and a broken spin-
rotation symmetry. This leads to a finite spin-mixing angle
even for k% =kF3 and below, which leads to the nontrivial
behavior with a minimum for intermediate impact angles.
This illustrates that not only the scattering potential itself but
also the Fermi-surface geometry is highly important for spin-
active scattering beyond the tunneling limit.

As for the magnitude of the mixing effect, we stress that
for a realistic choice of parameters, it is hardly possible to
achieve mixing-phases above 0.5% in this model. In Fig. 4
we use an exchange field of J=0.8EF, which is close to the
half-metallic limit. Using smaller exchange energies natu-
rally leads to a smaller effect, as can be seen in Figs. 5#a$ and
5#b$, where we plot & for different values of the exchange
field J=E3−E2.

In Fig. 6 we show the spin-mixing phases associated to
transmission, &2 and &3. One can see that &2=& /2 for k%

)0.31kF1. This relation one would expect for a SC contacted
with a half-metallic ferromagnet; the finding in Fig. 6 is con-
sistent with this and the discussion presented above since the
trajectories under consideration effectively correspond to the
HM case. For k% *0.31kF1, the mixing phase is considerably
enhanced above the value of & /2. The plots also illustrate
that &2 and &3 are different in magnitude and also vary dif-
ferently with k%. As we show in the Appendix, the mixing-
phases &2 and &3 are correlated with & but in general also
depend on a number of other free parameters. Their magni-
tude is decisive for the creation of triplet correlations in the
corresponding band as we will show below.

In Fig. 7 we present the product ,t+t+! , #which controls the
magnitude of long-range SAR$. We plot this quantity for
both the majority #upper row$ and minority #lower row$ band
of the FM. Apparently there is a nonmonotonous dependence
on the interface width d, which is related to the fact that
spin-flip scattering becomes more effective as the interface
region becomes larger. For even larger d the global suppres-
sion of transmission intervenes and we approach the tunnel-

(a) (b)

FIG. 4. #Color online$ The spin-mixing angle & as function of
the momentum component parallel to the interface, shown for vari-
ous barrier thicknesses. #a$ d=0.1, 0.5, and 1.0$F /2%, #b$ d=2.0,
3.0, and 5.0$F /2%. The remaining parameters are E2=0.1EF, E3
=0.9EF, U+=1.1EF, U−=1.9EF, and ,=0.5% #see text and Fig. 3$.

(a) (b)

FIG. 5. #Color online$ #a$ Spin-mixing angle & as a function of
impact angle for #a$ d=0.5$F /% and #b$ d=5.0$F /2%. In both plots,
the curves are for U−=1.2, . . . ,2.0EF, E3=U−−1.0. The correspond-
ing value of the exchange field J is indicated. The remaining pa-
rameters are E2=0.1EF, U+=1.1EF, and ,=0.5%.
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interface decreases, a subgap peak develops, as discussed in
the previous section !Fig. 13"b#$. However, the Andreev
bound state stays close to the gap edge in this scenario and
smears out even for very small temperatures.

In Figs. 14"a# and 14"b# we plot the spectrum around the
gap energy for different polarizations, i.e., exchange fields,
of the FM and a tunneling interface d=5.0!F /2". Appar-
ently, the subgap peak moves to lower energies as the ex-
change field increases but also decreases in magnitude. In
any case, the peak is too small and too close to the gap edge
to be observable at finite temperatures !Fig. 14"b#$. This situ-
ation cannot be circumvented in the frame of the box-
potential model, the reason being that one cannot obtain high
mixing angles for reasonable parameter ranges. Moreover,
this situation is aggravated by the Fermi-surface average. As
the mixing angle varies with the trajectory impact angle, the
peak is broadened even at T=0. This points again to the
crucial importance of the Fermi-surface geometry. If the
Fermi vector in the SC is considerably smaller than those of
the FM bands, the scattering states which contribute to the
current will be confined to a small range around perpendicu-
lar impact and hence a sharper peak structure can be ex-
pected.

Finally, we show that even if this exotic feature in the
conductance spectrum is not observable at finite tempera-
tures, the impact of spin-active scattering can still be impor-
tant. This holds, in particular, for FMs with high polarization,
where SAR will naturally dominate the spectrum, if it is
present. This can be seen in Fig. 15, where we plot the con-
ductance for a highly polarized "P=0.8# FM for #=0.5" and
#=0, respectively. In the latter case, SAR cannot occur. If

#=0.5", the spectrum is largely enhanced around the gap
energy. This is not surprising since SAR is mainly contribut-
ing in this energy range. Even at finite temperatures an ap-
preciable difference between the curves remains.

Turning to the smooth scattering potential, we see that the
situation changes fundamentally. We calculate the spectrum
for the same set of parameters as in Fig. 10. These results are
shown in Fig. 16. As we find a considerably enhanced mix-
ing angle in this case, it is not surprising that the subgap peak
is located far from the gap edge if the potential is sufficiently
smooth and may even be observed at finite temperatures. The
width of this peak is directly related to the Fermi-surface
average. The calculations in Fig. 16 are for a tunneling limit
situation "t2$0.01# and formula "52# holds approximately.
As one can see from Fig. 10"b#, % sweeps through the whole
range from 0 to its maximum value as a function of the
trajectory impact angle. This results in broadening and also
implies that the Fermi-surface geometry may have an impor-
tant impact on the shape of this bound-state peak. For the
particular geometry we consider here, with the Fermi sur-
faces of the FM bands being both smaller than that of the SC,
the mixing angle reaches 0 for grazing impact. If however,
the SC band is smaller than at least one of the FM bands, this
is no longer true as it can be seen in Fig. 4. Doing WKB
calculations for different geometries, we found that this may
result in a kink at the tail of the peak, if %min is large enough.

(a) (b)

FIG. 14. "Color online# The conductance G of an SC/FM point
contact as function of contact voltage V, for "a# T=0 and "b# T
=0.1 Tc. In both cases, the values of E3=0.2, . . . ,0.9 and U−=E−
+EF are increasing in steps of 0.1EF from top to bottom. The re-
maining parameters are E2=0.1EF, U+=1.1EF, #=0.5", and d
=5.0!F /2".

(a) (b)

FIG. 15. "Color online# The conductance G of a point contact as
function of contact voltage V, for "a# T=0 and "b# T=0.1 Tc, shown
for two values of #. The remaining parameters in all plots are E2
=0.1EF, E3=0.99EF, U+=1.1EF, U−=1.99EF, and d=1.0!F /2".

(a)

(b)

FIG. 16. "Color online# The differential conductance for the
smooth potential model. The parameters are the same as in Fig. 10.
The interface smoothness parameter & increases from back to front
by steps of 0.1!F. Temperatures are T=0 "top# and T=0.1Tc
"bottom#.
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important effects. The spin-mixing effect itself leads to spin-polarized bound states at the interface 
(Fig.4), which, given a sufficiently strong spin-rotation effect, will show up as subgap peaks in the 
conductance spectrum. Furthermore, spin-flip scattering will induce a new type of Andreev 
reflection where the transmitted particle and the coherently reflected hole have the same spin. This 
process can not be suppressed by the spin-polarization of the FM and will lead to important 
modifications of the spectrum if the spin-polarization is high.  

Evidence for the above-mentioned bound states has recently been found by an experimental group 
within the CFN (D. Beckmann, B2.7). In collaboration with an experimental group from 
Nottingham and a theorist from Prague we successfully used this theory to explain the conductance 
spectra of (Ga,Mn)As [B2.6:34], which is one of the candidates for ferromagnetism at room 
temperature in semiconductors and hence a promising material for spintronics applications. It was 
known that the usual extended-BTK model was not able to fit these spectra and had to introduce an 
‘effective’ temperature which was much higher than the actual temperature of the sample. Our 
theory was able to fit the experimental data with the real temperature by taking into account a 
spread resistance related to the poor conductivity of the sample (Fig.5). For nominally 7% Mn 
doped GaAs, we find a spin-polarization between 55 and 59%, which is substantially lower than 
what has been predicted based on the BTK-theory. We also show that electronic structure 
calculations based on the k*p kinetic exchange model for (Ga,Mn)As support an intermediate spin-
polarisation at this doping level. 
 

 
Figure 5.  GaMnAs PCAR-spectra, fitted with the BTK-model and an effective temperature of 
T*=10.95K (on the left), and three fits of different samples with the spin-active model. From Ref. 
[B2.6:33]. 

As a second application of our theory we performed a reanalysis of various conductance spectra of 
CrO2 available in the literature [B2.6:33]. These data had all been fitted with the BTK-theory. A 
general problem of this procedure was that it gave a large spread in the extracted spin-polarization 
of the material, which was believed to be at least close to half metallic, i.e. P≈100%, as confirmed 
by other experimental techniques [4]. Since the triplet Josephson-current through CrO2 already 
indicated that spin-active scattering was likely to play a role, we decided to fit these data with our 
theory, keeping P fixed at 100%, and found that our fitting works equally well or even better, since 
no suppression of the SC gap needs to be taken into account (Fig.6, left). In particular, this resolves 
the above-explained contradiction. To eventually settle this issue in a new generation of 
experiments, we identified two characteristic features that allow for a clear distinction between the 
two models. First, the conductance at zero bias and zero temperature will always be zero in the 
spin-active model (using P=100%), while the BTK model predicts a finite zero bias conductance if 
P<100%. Hence, measuring spectra at even lower temperatures may help to identify the right 
model. Second, there is clear difference in the excess current (defined as the difference between the 
current in the superconducting and the normal state of the junction at high voltage) between the two 
models for a wide range of interface transparencies (Fig.6, right). 
 

2

FIG. 1: (Color online) Experimental PCAR data (black dots) for the as-grown sample together with the theoretical fit (red line), (a) using the
modified BTK model, (b) according to the spin-active scattering (SAS) model in Ref. [12]. (c) Annealed sample and (d) another PCAR probe
applied to the as-grown sample, both analyzed using the SAS model. The fitting parameters are in the caption of the Figs. We underline that
the temperature (T) and the value of the transport spin polarization PC in Figs. (b), (c) and (d) are not fitting parameters, as detailed in the text.

tures, the absence of coherence peaks and the rather high zero-
bias conductance, cannot be reconciled within this model. To
remedy this situation, one needs to appeal to an “effective”
fictitious temperature, T ∗, which we find to be almost 6 times
as high as the real temperature of the sample in our case.
With this additional fit parameter, T ∗, satisfactory fits can be
achieved inferring a high value of the spin-polarization.

Alternatively, we propose an interpretation of the data us-
ing a model of interface scattering that goes beyond the BTK
theory and shows that good agreement can be achieved with-
out an effective temperature. From this analysis we infer a
value of the spin-polarization of about 57%. The value of the
transport spin polarization has been analyzed with the !k · !p
exchange model, that provides further confirmation that the
BTK polarization value was not realistic. We also notice a
substantial reduction of the superconducting energy gap and
critical temperature of the Nb tip, which is probably related to
an inverse magnetic proximity effect. From measurements of
the conductance spectra at different temperatures, we extrap-
olate the temperature dependence of the energy gap.

Experiment and BTK fitting.— We have analyzed samples
which are 7% Mn doped and 25 nm thick. They are grown
on a 400nm thick, highly carbon-doped (∼ 1019 cm−3) buffer
layer to minimise series resistance. The Curie temperature TC

and sheet resistivity ρ at 4.2 K are 70 K and ∼ 4 mΩcm for
the as-grown sample and ∼ 140 K, ∼ 2 mΩcm after 24 h
of annealing at 190 ◦C. The details of the sample growth
and preparation are described elsewhere [18]. The experi-
ments were carried out by means of a variable temperature
(1.5–300 K) cryostat. Sample and Nb tip (chemically etched)
were introduced into the PCAR probe, in which a piezo motor
and scan tube can vary the distance between tip and sample.
The PCAR junctions were formed by pushing the Nb tip on
the(Ga,Mn)As surface with the probe thermalized in 4He gas.
The current-voltage I vs V characteristics were measured by
using a conventional four-probe method and, by using a small
ac modulation of the current, a lock-in technique was used to
measure the differential conductance dI/dV vs V .

In Fig. 1 we show conductance spectra at low tempera-
ture (T ∼ 2 K), the resistance at high bias (that corresponds
to the resistance of the normal state) for the different contact

was about 28 − 30 Ω. The data of Fig.1(a) and (b) is iden-
tical, but (a) is fitted with the extended BTK model and b-d
with the theory of [12]. The data has been normalized us-
ing the background conductance estimated at large voltage
(V # ∆Nb/e) regions, where ∆Nb is the superconducting
gap of Nb (∆Nb ∼ 1.5 meV). All conductance spectra show
a moderate dip and completely suppressed coherence peaks
at the gap edge. While different PCAR probes on the same
sample, Fig. 1(b,d) result in different point-contact resistances
Rpc, the fitted value of PC almost does not change. Remark-
ably, no significant difference in the spectra (and PC) has been
noticed before and after annealing as shown in Fig. 1(b–d).

To fit the experimental data in Fig.1(a), we have used as free
parameters: PC ; the strength of the barrier, Z; the supercon-
ducting energy gap, ∆; and T ∗ and infer the spin-polarization
of about 90%, consistent with the other values reported in lit-
erature and a reduction of the superconducting energy gap.
We underline that using the BTK model requires a very high
effective temperature, T ∗ = 10.95 K, which is more than 5
times higher than the measured temperature of 1.9 K. Ac-
cording to Ref. [17], this effective temperature accounts for
inelastic scattering in the (Ga,Mn)As sample, but in any case
it is a parameter introduced ”ad hoc”, and whether such a high
value of T ∗ can be justified on this basis is not clear. Including
a ΓDynes parameter in the fitting parameter, it would add to
the smear-out of the spectrum and certainly allow for a smaller
T*, yet ΓDynes describes a finite quasiparticle lifetime in the
superconductor and not in the non-superconducting material.
Since the problems the BTK model has in fitting these spectra
are certainly related to the (Ga,Mn)As sample and not to the
Nb tip, it would not be reasonable to consider a bulk property
of Nb as a possible explanation.

Spin-active Scattering.— Recently, a theoretical model was
introduced which allows for a more realistic description of in-
terface scattering in the calculation of charge and spin trans-
port across such point contacts [12, 19]. When a contact with
a magnetic material is created, one would expect that the scat-
tering properties of quasiparticles depend on their spin. When
no tunneling potential is present, the transparency of the in-
terface is controlled by wave vector mismatches. Since wave
vectors of ↑- and ↓-spin quasiparticles are different in the FM
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Figure 6. Andreev spectra of CrO2 . Fits to four data sets are shown on the left, the spin-active 
model (red) is compared to the BTK fit (blue dashed with the SC-gap as fit parameter, blue dotted 
using the bulk value of the SC-gap). On the right, the zero-bias conductance is plotted against 
temperature in the top panel, (a) BTK-model, (b) spin-active model. In the lower panel, the excess 
current is plotted against Z, the parameter controlling the transparency of the interface, for (c) the 
BTK-model and (d) the spin-active model. From Ref. [B2.6:33]. 

 
4. Superconducting proximity effects in systems with spiral magnetic structures 
Recently there has been rapid progress in the field of chiral magnetism that raises the expectations 
for applications of chiral magnets in spintronics. Chiral order occurs in inversion asymmetric 
magnetic materials that in the presence of spin-orbit coupling give rise to a Dzyaloshinskii-Moriya 
interaction. This interaction favors a directional noncollinear (spiral) spin structure of a specific 
chirality over the usual collinear arrangement favored by the Heisenberg exchange interaction. A 
well-studied chiral magnet (CM) is the transition-metal compound MnSi, with the spiral wave 
length of 180 Angstrom. Nanoscale magnets or magnetic systems with reduced dimensionality that 
frequently lack inversion symmetry due to interfaces and surfaces are expected to exhibit chiral 
magnetism. This has been confirmed by the recent observation of a spin spiral structure in a single 
atomic layer of manganese on a tungsten substrate. In an earlier funding period, we have studied in 
a number of publications the superconducting proximity effect with a magnet that exhibits a spiral 
magnetic order [5-7]. 

In Ref. [B2.6:15] we studied the π phase in a superconductor-ferromagnet-superconductor 
Josephson junction with a ferromagnet showing a cycloidal spiral spin modulation with in-plane 
propagation vector. Our results reveal a high sensitivity of the junction to the spiral order and 
indicate the presence of 0-π quantum phase transitions as function of the spiral wave vector. We 
find that the chiral magnetic order introduces chiral superconducting triplet pairs that strongly 
influence the physics in such Josephson junctions, with potential applications in nanoelectronics 
and spintronics.  
                       

been discussed seriously (Woods et al. [14]). However,
because we found an uncertainty concerning their data
we do not present a fit here [24]. It is crucial to use ! as
the fit parameter in the extended BTK model, while such
variation does not improve the fits to the spin-active inter-
face model. It is unclear why the (bulk) ! should vary so

much [see Fig. 3(b)], in contrast to other experiments with
superconducting STM tips [18]. All point contacts appear
to be highly transparent with a small barrier strength
parameter Z < 1. This is consistent with a Fermi velocity
mismatch, which for Pb=CrO2 was estimated in Ref. [15]
to give Z ! 0:26. But this phenomenological parameter
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FIG. 2 (color online). Point-contact Andreev reflection data on
CrO2 from the literature and nonlinear curve-fits to the theory of
superconductor-half-metallic ferromagnet point contact with
spin-active interface (red solid lines) and the extended BTK
model (blue dashed lines). The blue dotted lines are fits to the
modified BTK model without using ! as fit-parameter. Panels
(a)-(d) are the data sets 1, 2, 7, and 10 in Table I.
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FIG. 3 (color online). Correlations between fit parameters.
(a) Spin polarization P and series resistance rs versus the barrier
strength Z in the modified BTK model. (b) The superconducting
gap ! versus Z in the modified BTK model. (c) Spin-mixing
angle # and rs versus Z in the spin-active interface model.
(d) Comparison of the fitting function !2 divided by the number
of data points N for the two models.

TABLE I. Results of nonlinear curve fits of the extended BTK model (middle set of columns) and the spin-active interface model
(right set of columns) to point-contact Andreev reflection data on CrO2 with superconducting tips of Nb (!ðT ¼ 0Þ ¼ 1:5 meV,
Tc ¼ 9:2 K) and Pb (!ðT ¼ 0Þ ¼ 1:35 meV, Tc ¼ 7:2 K). We have obtained improved fits to the extended BTK model [16] by
including a series resistance rs ¼ Rs=Rn normalized to the point-contact resistance Rn as a fourth fit parameter [14]. The resulting spin
polarization P, barrier strength parameter Z, and zero temperature gap parameter ! are therefore different than found in the original
papers. In the spin-active interface model the bulk quantities are fixed (P ¼ 100% and ! retains its bulk value), while two interface
parameters (barrier strength Z and spin-mixing angle #) and the series resistance rs have been used as fit parameters. The report in
Ref. [15] only contains the fit parameters, but no spectra.

Extended BTK model Spin-active interface model

# Reference tip T [K] P [%] Z ! [meV] rs !2 P [%] Z #=" ! [meV] rs !2

1. Soulen et al. [3] Nb 1.6 66 0.90 1.0 0.05 0.34 100 0.12 0.58 1.5 0 0.32
2. DeSisto et al. [8] Pb 1.7 54 1.0 1.2 0.02 0.038 100 0.28 0.44 1.35 0.05 0.065
3. Ji et al. [9] Fig. 4(a) Pb 1.85 57 1.1 1.48 0 0.067 100 0.70 0.17 1.35 0.08 0.22
4. Ji et al. [9] Fig. 4(b) Pb 1.85 72 0.87 1.43 0.05 0.025 100 0.38 0.22 1.35 0.17 0.091
5. Ji et al. [9] Fig. 4(c) Pb 1.85 94 0.50 1.0 0.32 0.090 100 0.023 0.36 1.35 0 0.093
6. Ji et al. [9] Fig. 4(d) Pb 1.85 98 0 0.9 0.42 0.062 100 0 0.39 1.35 0.06 0.087
7. Anguelouch [10] Fig. 1(a) Pb 1.6 63 1.3 1.35 0 0.10 100 0.57 0.23 1.35 0.06 0.15
8. Anguelouch [10] Fig. 1(b) Pb 1.6 94 0.12 1.1 0.13 0.078 100 0.26 0.28 1.35 0.02 0.081
9. Anguelouch [10] Fig. 1(c) Pb 1.6 96 0.18 1.0 0.16 0.24 100 0.058 0.34 1.35 0 0.22
10. Anguelouch et al. [11] Pb 1.6 97 0 0.94 0.29 0.27 100 0.035 0.35 1.35 0 0.28
11. Osofsky et al. [12] Pb 1.7 64 1.0 1.17 0 0.19 100 0.26 0.40 1.35 0 0.21
12. Osofsky et al. [13] Nb 1.7 70 1.0 1.3 0 0.21 100 0.26 0.37 1.5 0 0.20

Woods et al. [14] Sn=Pb 1.75 80 0.96 0:59=1:2 0.28 % % %
Yates et al. [15] Pb 4.2 65–100 0–1.7 0.9–1.3 % % % % % %
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should include a range of effects causing mismatch be-
tween the materials.

We are able to fit the experimental data with three
parameters describing the interface (# and Z) or the ge-
ometry (rs), while the extended BTK model relies for the
same spectra on four fit parameters among which two
(P and !) pertains to bulk properties, one to the interface
(Z), and one to the geometry (rs). The part of the spectra
hardest to fit to either model is the low-voltage region. In
this region there are typically much less data points than in
the high voltage region [for example Fis. 2(b) and 2(c)].
This typically happens in a current bias set-up, which is not
ideal for PCAR. Our fits could be further improved if we
would allow for broadening in the form of a convolution
with a Gaussian (as used in Ref. [15]), which would
describe, e.g., voltage fluctuations. Since we do not know
all experimental uncertainties we leave this question open
for future experiments.

We would like to point out a few details of importance
for future PCAR experiments, which may shed more light
on the properties of CrO2. Thermal smearing is important,
since it gives a considerable increase of GðV ¼ 0Þ as
compared with the T ! 0 limit at the temperatures used
in the experiments. For the spin-active interface model,
Gð0Þ ! 0 as T ! 0 independently of the barrier strength.
This is a unique feature that has not been fully explored
experimentally. In our model this is a result of vanishing
spectral current j" ¼ 0 at the Fermi energy " ¼ 0. In
contrast, in the extended BTK model, Gð0Þ saturates at a
value given by the polarization and barrier strength; see
Figs. 4(a) and 4(b). Thus, the temperature dependence of
Gð0Þ in a well-defined voltage bias setup can be used as a
consistency check between experiment and theory.

Another quantity that has not been explored experimen-
tally so far is the excess current, formally defined as Iexc ¼
limV!1½IðVÞ % InðVÞ&, where InðVÞ is the current in the
normal state ( ¼ RnV according to Ohm’s law). In certain
limits, the excess current can be computed analytically
although the formulas are rather cumbersome. We present
the excess currents predicted by the two models in Figs. 4(c)
and 4(d). A measurement of the excess current in addition to
the PCAR spectrum can be used to pin down one of the fit
parameters (or as consistency check) in future experiments.
In conclusion, a number of PCAR spectra of CrO2 have

been presented in the literature where, by comparing the
data to extended BTK models, a putative spin polarization
between 50% and 100% has been extracted. This is in
contrast to Zeeman split conductance measurements where
100% polarization was found. We have provided an alter-
native view of the PCAR data, where the spin polarization
is 100%, but the scattering at the contact is spin active.
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Figure 7 Left top: S-CM-S Josephson junction where CM is a chiral ferromagnet; the spins are confined to a 
plane (the x-y plane) parallel to the spiral propagation direction (the y axis). Bottom: corresponding (df - Q) 
phase diagram. Right: Josephson critical current Ic vs the spiral wave vector Q for a few thicknesses of the 
ferromagnet: curves from top to bottom df/ξf = 0.1, 1, 3, 5. The inset shows the flow of the real and imaginary 
parts of the momentum eigenvalues with varying η=(QξJ)2/4 for the first Matsubara frequency. All results are 
for T =0.1Tc and J =20Tc. From Ref. [B2.6:15]. 

The presence of a spin spiral can change the ground state of the Josephson junction and lead to a 
transition between a π junction and a 0 junction for a critical spiral wave vector. This effect is 
shown in Fig. 7. The dependences of the Josephson effect on magnet thickness and temperature 
depend sensitively on the wave vector of the chiral order in the magnet. We predict that a quantum-
critical point should exist in the phase diagram for suitably chosen sample parameters, with a phase 
diagram as in the lower left of Fig. 7. 
 
 
5. Spin-polarized Andreev states in non-centrosymmetric materials 
The role of chirality and spin-orbit coupling in materials and nanostructures is a very active subject 
in the fields of spintronics, superconductivity, and magnetism. The unusual properties of non-
centrosymmetric (NCS) materials originate from the crystal structure that lacks a center of 
inversion, allowing for pronounced spin-orbit (SO) coupling that is odd in the electron momentum, 
and leading to a chiral ground state. The resulting two-band nature of NCS metals leads to effects 
reminiscent of semiconductor physics, such as birefringence and spin polarization of the electron 
wave packet. Especially promising is the presence of charge-neutral spin currents in the ground 
state. The recently discovered class of NCS superconductors combines the strong SO coupling that 
governs the metallic bands with a nontrivial spin structure of the superconducting (SC) order 
parameter due to lack of parity. As a result, one may expect that spin transport in the SC phase 
exhibits novel features compared to usual superconductors. These features are especially prominent 
near surfaces and interfaces, where the physics is controlled by the Andreev bound states, built as a 
result of particle-hole coherent scattering.  

We have investigated in a number of publications [B2.6:18-20] the ground state properties of a non-
centrosymmetric superconductor near a surface. We have determined the spectrum of Andreev 
bound states due to surface-induced mixing of bands with opposite spin helicities for a Rashba-type 
spin-orbit coupling. We find that the order parameter suppression qualitatively changes the bound 
state spectrum. The spin structure of Andreev states leads to a spin supercurrent along the interface, 
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4Fachbereich Physik, Universität Konstanz, D-78457 Konstanz, Germany

(Received 22 June 2007; published 21 February 2008)

We study the ! phase in a superconductor-ferromagnet-superconductor Josephson junction, with a
ferromagnet showing a cycloidal spiral spin modulation with in-plane propagation vector. Our results
reveal a high sensitivity of the junction to the spiral order and indicate the presence of 0-! quantum phase
transitions as function of the spiral wave vector. We find that the chiral magnetic order introduces chiral
superconducting triplet pairs that strongly influence the physics in such Josephson junctions, with
potential applications in nanoelectronics and spintronics.
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It is by now well established that an equilibrium super-
conducting phase difference of ! can be arranged between
two singlet superconductors (S) when separating them by a
suitably chosen ferromagnetic (F) material [1,2]. Transi-
tions between the ! state and the 0 state of such Josephson
junctions have been revealed in experiments through os-
cillations of the Josephson critical current with varying
thickness of the ferromagnet [3] or with varying tempera-
ture [4]. The ! Josephson junction is currently of consid-
erable interest as an element complementary to the usual
Josephson junction in the development of functional nano-
structures [5], including superconducting electronics [6]
and quantum computing [7].

Recently there has been rapid progress in the field of
chiral magnetism [8–11] that raises the expectations for
applications of chiral magnets in spintronics. Chiral order
occurs in inversion asymmetric magnetic materials [9,11]
that in the presence of spin-orbit coupling give rise to a
Dzyaloshinskii-Moriya interaction Dij ! "Si # Sj$. This in-
teraction favors a directional noncollinear (spiral) spin
structure of a specific chirality over the usual collinear
arrangement favored by the Heisenberg exchange interac-
tion Jij"Si ! Sj$. A well-studied [9,10] chiral magnet (CM)
is the transition-metal compound MnSi, with the spiral
wave length ! % 180 "A. Nanoscale magnets or magnetic
systems with reduced dimensionality that frequently lack
inversion symmetry due to interfaces and surfaces are
expected to exhibit chiral magnetism [8]. This has been
confirmed by the recent observation [11] of a spin spiral
structure (with ! % 12 nm) in a single atomic layer of
manganese on a tungsten substrate.

In this Letter, we combine chiral magnetism with super-
conductivity in a controllable Josephson nanodevice where
0-! transitions can be induced by tuning the magnetic
spiral wave vector Q (see Fig. 1). Possible ways of control

in nanomagnets are, e.g., electric fields, geometry, or pin-
ning layers. Such a Josephson device shows a surprisingly
complex behavior with 0- to !-state transitions as function
of ! & 2!=Q, that turn into zero temperature transitions
for some critical wave vectors. However, below a material
specific threshold !th & !"J, where "J is the penetration
depth of pairs into the chiral magnet, a qualitatively differ-
ent behavior is found.

Within our model chiral magnetism and singlet super-
conductivity take place in mutually separated materials,
and the magnetic spiral affects only the superconducting
proximity amplitudes. This is in contrast to the case of
coexisting superconducting and spiral magnetic order
within the same material [12]. We also contrast our model
to the case of a helical spiral spin modulation with a
propagation wave vector perpendicular to the S-F interface
[13], and the Josephson effect in S-F-S junctions with a
Néel domain structure [14]. The physics studied in
Refs. [13,14] is dominated by the presence of long-range
triplet components that are absent in the present system

FIG. 1 (color online). S-CM-S Josephson junction where CM
is a chiral ferromagnet with a cycloidal spiral spin modulation;
i.e., the spins are confined to a plane (the x-y plane) parallel to
the spiral propagation direction (the y axis).
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For #< 1 only the terms with " ! "0 contribute, while for
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where RN ! $df ) 2&b%f'='fS is the normal state
resistance, 'f ! 2e2NfDf is the conductivity of the CM
layer, and V0 ! !!2

s=4eTc. On the other hand, for low
barrier transparencies (&b + 1) [20], we have A" ,
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In the absence of inhomogeneity (Q ! 0), we then recover
expressions for the critical current in the literature [1].
Note that the temperature T appears through several terms
in Eq. (14), such as !s (here we assume the BCS tempera-
ture dependence), "n, and k".

In the following we study the influence of an exchange
field with chiral order on the Josephson effect on the basis
of Eq. (14). For small thicknesses df we have used the
more general expression (12) to verify that Eq. (14) indeed

is applicable in the parameter range we consider. As we
show in Fig. 2, the chiral magnetic order introduces a
surprisingly rich behavior: the magnitude of Ic as function
of increasing wave vector Q presents initial oscillations
and suppression, followed by increase and final saturation.
Depending on the thickness of the CM layer, there can be
one or several 0-! and !-0 transitions as function of the
spiral order wave vector Q. Above a certain value of Q
(Q%J ! 2 indicated by the vertical line in the figure) Ic is
positive independently of other model parameters, mean-
ing that the junction phase difference is stabilized at zero.
Physically, this can be understood as an averaging out of
the exchange field within one magnetic length %J.
Technically, this critical value of Q separates a region
with complex eigenvalues k" (#< 1, oscillating Ic) from
a region with real k" (#> 1, monotonically increasing Ic),
see the inset of Fig. 2. For #< 1, the complex k" leads to a
nonmonotonic dependence of Ic as function of Q. In the
large-Q limit, the Josephson critical current for a junction
with a normal metal is recovered.

In Fig. 3(a) we study in more detail the critical current
within the region 0 - Q%J - 2 supporting oscillations.
For an intermediately thick magnetic film (here df !
2:7%f) it is possible to see both 0-! and !-0 transitions
as function of Q, with a reasonably large critical current.
The phase transitions shift to lower values of Q with
increasing temperature. As seen in Fig. 3(b), the spiral
order can also induce 0-! transitions as function of tem-
perature for certain parameter ranges.

Phase diagrams of the !-0 transitions are presented in
Fig. 4. We see that in the low-T region [4(a)] the phase
transition line T!-0$Q' develops a very steep slope. This
insensitivity to temperature variations can be of importance
for device applications. Although at ultralow temperatures
a more sophisticated theory than the mean field approach
presented here should be used, our results in Fig. 4 give a
strong indication of a !-0 transition as a function of Q also
at zero temperature. Thus, the system of a chiral magnet

FIG. 2 (color online). Josephson critical current Ic vs the spiral
wave vector Q for a few thicknesses of the ferromagnet: curves
from top to bottom df=%f ! 0:1, 1, 3, 5. Here T ! 0:1Tc and
J ! 20Tc. The inset shows the flow of the real and imaginary
parts of the eigenvalues k*1 with varying # ! $Q%J'2=4 for
"n ! !Tc.
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FIG. 3 (color online). (a) Critical current vs spiral wave vector
for a few temperatures, in the region 0 - Q%J - 2, where 0-!
transitions are possible. Here df ! 2:7%f and J ! 20Tc. (b) The
0-! transition is observable as function of temperature for a
certain thickness (here df ! 0:45%f) by tuning the spiral wave
vector. The other model parameters are the same as in (a).
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sandwiched between two superconductors is of potential
interest for the study of critical behavior near a quantum-
critical point.

In the right panel of Fig. 4 the very different behaviors
for Q!J < 2 and >2 are also seen. For Q!J < 2 the spiral
order shifts the transition lines towards thicker magnetic
films, but the transition line never disappears from the
phase diagram. Only in the region Q!J > 2 is the averag-
ing of the exchange field over the magnetic length so
effective as to prevent 0-" transitions.

In summary, we have studied the Josephson effect in an
S-CM-S junction in the presence of an in-plane cycloidal
spin spiral structure in the magnet. We have found that the
presence of a spin spiral can change the ground state of the
Josephson junction and lead to a transition between a "
junction and a 0 junction for a critical spiral wave vector.
The dependences of the Josephson effect on magnet thick-
ness and on temperature depend sensitively on the wave
vector of the chiral order in the magnet. We predict that a
quantum-critical point should exist in the phase diagram
for suitably chosen sample parameters.

We would like to thank Gerd Schön for valuable con-
tributions to this work. T. L. acknowledges support from
the Alexander von Humboldt Foundation.

Note added.—After submission, we became aware of
work by Crouzy et al. [21], who study in-plane magnetic
Néel domain walls. Their model is markedly different from
ours, but leads to similar findings about the periodicity of 0
to " transitions with the magnetic inhomogeneity.
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[19] T. Löfwander, T. Champel, and M. Eschrig, Phys. Rev. B

75, 014512 (2007).
[20] We assume that the following inequalities hold

!#bk$!f"#1 $ tanh!x$" $ #bk$!f.
[21] B. Crouzy, S. Tollis, and D. A. Ivanov, Phys. Rev. B 76,

134502 (2007).

FIG. 4 (color online). (a) (T #Q) phase diagram for a
Josephson junction with a chiral magnet (J % 20Tc) between
two singlet superconductors. The transition from a " junction at
smaller chiral wave vector Q to a 0 junction at larger Q is
indicated for several thicknesses of the ferromagnetic layer.
(b) Corresponding low-T (df #Q) phase diagram (T % 0:1Tc).

PRL 100, 077003 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
22 FEBRUARY 2008

077003-4



B2.06   Schön, Eschrig 

 
 

10 

which is strongly enhanced compared to the normal-state spin current. Particle and hole coherence 
amplitudes show Faraday-like rotations of the spin along quasiparticle trajectories. 

We consider the Rashba-type spin orbit coupling entering the Hamiltonian as 
 

 
that defines for each Fermi surface point a spin orbit vector gk. The corresponding vector field is 
shown in Fig. 8 on the left. It results in spin polarized surface Andreev bound states. As a result, 
there are spontaneous spin currents in the ground state (shown in the right subpanels), that have a 
spin polarization pointing in the z-direction at the surface (in Fig. 8, the surface normal is the x-
direction). The spatial oscillations of the spin currents are determined by the spin-orbit strength α 
and appear due to Faraday-like rotations of the spin coherence functions along quasiparticle 
trajectories.	
  	
  We also found that the suppression of superconductivity near the surface gives rise to a 
finite-bias peak in the surface density of states that can be probed by point contact tunneling. Our 
predictions open the route to future investigations and applications of spin transport in systems 
containing superconductors without center of inversion, and for their use in spin-based devices.	
  
 

 
Figure 8. Left: A map of the spin-orbit vector in momentum space for the Rashba form. On 
reflection the spin-orbit vector gk  may change, e.g., from A to A’, or not, e.g., from B to B’. The 
scattering geometry is shown on the left. Right: Spin-resolved surface DOS for two trajectories, 
that are indicated on top.  The spin polarization of the Andreev bound states leads to ground state 
spin currents that are shown in the right two subpanels for two different values of spin-orbit 
interaction. Here, Ji

α denotes the current in i-direction (i=x,y,z) of spin in α direction (α=x,y,z). 
From Ref. [B2.6:19]. 

 
6. Crossed Andreev reflections 
We have carried out intensive investigations of both local and non-local spin-sensitive Andreev 
reflection in hybrid metallic structures containing superconducting (S) and normal/ferromagnetic 
(N/F) electrodes [B2.6:8,10-12, 17, 24, 25, 29]. The term non-local conductance refers to transport 
processes in multi-terminal devices which correlate charge transfer at different contacts. In practice, 
this can be quantified by the conductance dI1/dV2, i.e. the current at contact 1 derived with respect 
to the voltage at contact 2. It was known for a while that at low temperatures and bias voltages the 
non-local conductance of a NSN structure is dominated by only two processes. Elastic co-tunneling 
(EC), which implies the tunneling of a quasiparticle from one N-electrode to the other through the 

Nambu spinor Ĉy
k ¼ ðcyk"; cyk#; ck"; ck#Þ by B̂k ¼ ÛkĈk,

Ûk ¼ diagðUk; U
$
kÞ and construct 4% 4 retarded Green’s

functions in the helicity basis, Ĝk1k2
ðt1; t2Þ ¼ &i!ðt1 &

t2ÞhfB̂k1
ðt1Þ; B̂y

k2
ðt2ÞgiH , where B̂ðtÞ are Heisenberg opera-

tors, the braces denote an anticommutator, h. . .iH is a
grand canonical average, and ! is the usual step function.

We employ the quasiclassical method [21] for treating
the inhomogeneous surface problem. In the materials of
interest "jgkf

j ' Ef for any Fermi momentum kf, where

Ef is the Fermi energy. In addition, the superconducting
energy scales (transition temperature Tc and the gap !) are
much smaller than Ef. Under these conditions quasipar-
ticles with different helicity can be assigned to a common
Fermi surface and propagate coherently along a common
classical trajectory over distances much longer than the
Fermi wavelength. We normalize gk, hg2

kf
i ¼ 1, where

h. . .i denotes a Fermi surface average. The quasiclassical
propagator is then obtained as ĝðkf;R; #; tÞ ¼ $̂3

R
d%k%RðdqÞðd$ÞeiðqRþ#$ÞĜkþq=2;k&q=2ðtþ $

2 ; t& $
2Þ where $̂3 is

the Pauli matrix in the particle-hole space. Using
U&kU

y
k ¼ ing! and the fermionic anticommutation

relations for the b and by, we derive the fundamental
symmetry relations for the 2% 2 Nambu matrix com-
ponents, gð#;kfÞ22 ¼ ½ðng!Þgð&#;&kfÞ11ðng!Þ*$ and
gð#;kfÞ21 ¼ ½ðng!Þgð&#;&kfÞ12ð&i&2Þðng!Þ*$ði&2Þ.

Standard procedure [21] yields the Eilenberger equation
in the helicity basis,

½"$̂3 & "v̂SO & !̂; ĝ* þ ivfrĝ ¼ 0̂ (3)

with normalization ĝ2 ¼ &'21̂. Here, " is the energy,

v̂SO ¼ jgkfj&3$̂3, and !̂ is the superconducting OP. The
velocity renormalization of order "=Ef ' 1 is neglected.
We choose a separable pairing interaction consistent with

the form of the gap, and determine !̂ self consistently with
ĝ. In NCS superconductors the OP is a mixture of spin
singlet (!s) and triplet (!t) components [13,22]. In the real

gauge it is given by

!̂ ¼ YðkfÞ½!sðRÞ1̂þ!tðRÞv̂SOðkfÞ*ði&2Þ$̂1; (4)

where the basis function YðkfÞ transforms according to
one of the irreducible representations of the crystal point
group, and hY2ðkfÞi ¼ 1. With the gap functions in the
helicity bands, !+ ¼ !s + !tjgkf

j, the order parameter is

! ¼ f!þ&
þ & !&&

&gY, where &+ ¼ ð&1 + i&2Þ=2.
We parametrize the Green’s function by the coherence

functions for particles and holes, ( and "( (2% 2 spin
matrices), which allow a very intuitive physical interpre-
tation of the Andreev scattering processes [23],

ĝ ¼ &i'
1& ( "( 0

0 1& "((

! "&1 1þ ( "( 2(
&2 "( &1þ "((

! "
:

(5)

Fundamental symmetry relates ( and "( in the helicity basis
by "(ð#;kfÞ ¼ ½ðng!Þ(ð&#;&kfÞð&i&2Þðng!Þ*$ði&2Þ. In
the bulk, ( ¼ (0

þ&
þ & (0

&&
&, and "( ¼ ~(0

&&
þ & ~(0

þ&
&,

with (0
+ð#;kfÞ ¼ &!+ðkfÞ=ð#þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j!+ðkfÞj2 & #2

q
Þ and

~(0
+ðkf; #Þ ¼ (0

+ð&kf;&#Þ$.
The surface bound states are determined by the poles of

the Green’s function, Eq. (5). We consider specular reflec-
tion, whereby the component of k normal to the surface
changes sign, k ! k; see Fig. 1. We find (k ( "(k), by

integrating forward (backward) along the incoming, k,
(outgoing, k) trajectory starting from the values in the
bulk [23]. In contrast, (k and "(k, are determined from

the boundary conditions at the surface. Since the interface
is nonmagnetic, ĝ in the spin basis, ĝsk ¼ Ûy

kĝkÛk, is
continuous at the surface. This leads to a surface-induced
mixing of the helicity bands according toUy

k(kU
$
k¼(s

k¼
(s
k¼Uy

k(kU
$
k and UT

k "(kUk¼ "(s
k¼ "(s

k¼UT
k "(kUk. From

Eq. (5), the bound states correspond to the zero eigenvalues
of the matrix 1& (k "(k ¼ 1& (kU

$
kU

T
k "(kUkU

y
k at the

surface, and we derive our final equation for the ABS
energies via the surface amplitudes in the helicity basis

ð1þ(þ ~(þÞð1þ(& ~(&Þ ¼&ð1þ(þ ~(&Þð1þ(& ~(þÞM:

(6)

The ‘‘mixing’’ factorM is determined by the change of gk

under reflection k ! k at the surface,

M ¼ sin2
!g&!g

2 þ sin2
!gþ!g

2 tan2
)g&)g

2

cos2
!g&!g

2 þ cos2
!gþ!g

2 tan2
)g&)g

2

; (7)

where !g, )g and !g, )g are the polar and azimuthal

angles of gk and gk, respectively. If gk ¼ gk (B ! B0 in
Fig. 1) there is no helicity band mixing, M ¼ 0, and we
recover the conditions for ABS in superconductors with no
SO coupling. The limit M ! 1 describes pure interband
scattering. For a general Fermi surface and an arbitrary
vector gk (A ! A0 in Fig. 1) a finite M determines the
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FIG. 1 (color online). A map of the spin-orbit vector in mo-
mentum space for the Rashba form gk ¼ k̂% ẑ. On reflection
the spin-orbit vector gk may change, e.g., from A ! A0, or not,
B ! B0. The scattering geometry is shown on the left.
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relative weights of intraband and interband scattering, and
Eq. (6) gives the bound state energy.

We show now that the suppression of the anisotropic
(triplet) component of the OP in Eq. (4) near the surface
drastically modifies the ABS spectrum, and the surface

DOS, Nð";kfÞ ¼ $ Nf

2! ImTrfgð";kfÞg, where Tr is a 2%
2 spin trace, and Nf is the normal state DOS. The salient
features are clear from considering a 2D material with the
Rashba-type SO coupling " ¼ "Rkf, gk ¼ ðk% ẑÞ=kf ¼
ðky;$kx; 0Þ=kf, and a triplet order parameter, !þ ¼
$!$ ¼ !; we find only quantitative differences for 3D
Fermi surface, !þ ! $!$ and other gk’s.

To obtain insight in the role of the OP suppression, we
consider first a simple model where ! ¼ 0 in a layer of
width W next to the surface; see Fig. 2. Trajectories inci-
dent at an angle # travel through a non-SC region of an
effective width 2D ¼ 2W= cos#. In this case Eq. (7) reads
M ¼ cot2#, the surface coherence amplitudes gain a
phase factor, $' ¼ $0

'e
i2"D=vf , ~$' ¼ ~$0

'e
i2"D=vf , Eq. (6)

yields Im2ð~$0
þe

i2"D=vf Þ ¼ Re2ð~$0
þe

i2"D=vf ÞM, and the
bound states are given by

"=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

0 $ "2
q

¼ $ tanð2W"=vf cos#'#Þ: (8)

Solutions of this equation are shown in Fig. 2. The ‘‘prin-
cipal’’ modes with energies away from the continuum edge
contribute the most to the subgap DOS. W ¼ 0 (no gap
suppression) reproduces the result of Ref. [24]: each in-
coming trajectory yields a bound state at a different energy.
For W ! 0 the main mode "bsð#Þ develops a maximum at
"? < !0, and we expect a peak in the surface DOS near "?

due to abundance of trajectories contributing to Nð"?Þ.
The fully self-consistent solution, shown in Fig. 3(b),

confirms this. Note that ! ! 0 at the surface, Fig. 3(a), as
in other unconventional superconductors misaligned with
respect to the interface [16]. Crucially, self-consistency
does yield a strong peak in the surface DOS below the
gap at a finite energy, in qualitative contrast to earlier
results [24,25]. Experimentally accessing this peak by

point contact tunneling requires a sufficiently wide tunnel-
ing cone as the feature arises from the trajectories at
intermediate incident angles; see Fig. 2.
These ABS have unusual spin structure. Figures 3(c) and

3(d) show the spin-resolved density of states, N"# ¼ N '
NZ, where N is the net DOS and N"ð%;kf;xÞ ¼
$ Nf

2! ImTrf&"gð%;kf;xÞg. At the interface NX ¼ NY ¼
0. The states corresponding to different branches of
Eq. (8) have opposite spin polarization. Since the spin
polarization changes sign for reversed trajectories, the
Andreev states carry spin current along the interface.
Spin currents exist in NCS materials because the spin is

not conserved, and consequently precession terms enter the
continuity equation, @tS

"ðxÞ þ r (!"ðxÞ ¼ P"ðxÞ [5].
Here, the spin density, S"ðxÞ ¼ 1

2 Tr
R
dk&"Gðk;xÞ, the

spin current, !"ðxÞ ¼ 1
4 Tr

R
dkf&"; vkgGðk;xÞ, and the

precession P"ðxÞ ¼ 1
2i Tr

R
dk½&"; vk ( k*Gðk;xÞ, (where

[+, +] is a commutator, and vk ¼ kf=mþ "R½ẑ% !* is
the band velocity), are all given in terms of Green’s func-
tions at imaginary relative time ' ¼ $i0. For the Rashba
case, the precession terms are related to spin currents via
the relations PX ¼ $2m"R"

Z
x , P

Y ¼ $2m"R"
Z
y , P

Z ¼
2m"Rð"X

x þ"Y
y Þ [26].

We first consider the spin currents in the normal state.
The bulk value, "Y

x ¼ $"X
y ¼ "bulk

spin ¼ m2"3
R=3! agrees

with Ref. [5]. To determine the surface spin currents we
find the Green’s function for a surface modeled as a
(-function barrier at x ¼ 0 of strengthU. The Dyson equa-
tion in 2% 2 spin space reads G$1 ¼ ½Gð0Þ*$1 $U(ðxÞ,
where ½Gð0Þ

k *$1 ¼ "$ )k $ "Rðk% ẑÞ!. For an impene-
trable surface (U ! 1) the solution is (for fixed ky) [27]
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Gkxk
0
x
¼ Gð0Þ

kx
2!"ðkx $ k0xÞ $Gð0Þ

kx

1
R dpx

2! Gð0Þ
px

Gð0Þ
k0x
: (9)

We solve Eq. (9) numerically, and show the normal state
surface spin currents in Figs. 4(a) and 4(b). The most
prominent new feature is a large surface current !Z

y with
out of plane spin polarization [28] that flows along the
surface, and decays rapidly into the bulk on the scale
similar to that of Friedel oscillations. This component is
related to !Y

x via the continuity equation, !Z
y ðxÞ ¼

$1=ð2m#RÞd!Y
x ðxÞ=dx. As a result, this component is

much greater, by a factor of order kf=m#R, than the bulk
spin currents in the normal state.

The SC spin current, shown in Figs. 4(c) and 4(d), is
defined in the quasiclassical method relative to the normal
state,

J # % !# $!#
N ¼

Z 1

$1
d$nfð$ÞhvfN#ð$;kf;xÞi; (10)

where nfð$Þ is the Fermi function. The surface-induced
current with out of plane spin polarization is greater than
the normal state current by the factor &TcE

2
f=#

3. The

maximal amplitude at the surface is solely determined by
the structure of the SC gap and formally survives even in
the limit # ! 0. SC spin currents decay into the bulk on
the scale of the coherence length, much slower than in the
normal phase. The oscillations in Figs. 4(c) and 4(d) are
determined by the spin-orbit strength # and appear due to
Faraday-like rotations of the spin coherence functions
along quasiparticle trajectories.

In summary, we presented a general analysis of surface
bound states and the associated spin currents in noncen-
trosymmetric superconductors, and applied it to a system
with a Rashba-type spin-orbit coupling. We found that the

suppression of superconductivity near the surface gives
rise to a finite-bias peak in the surface density of states
that can be probed by point contact tunneling. We pre-
dicted that large in amplitude and slowly decaying spin
currents with out of plane spin polarization are generically
carried by these surface states. Our prediction opens the
route to future investigations and applications of spin
transport in systems containing superconductors without
center of inversion, and for their use in spin-based devices.
This work was supported by the Louisiana Board of
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superconductor, gives a negative contribution to dI1/dV2. Crossed Andreev reflection (CAR), the 
Andreev process where the incident particle enters from one contact and the coherently reflected 
hole is emitted into the other, provides a positive contribution. CAR may be seen as a source of 
spatially separated, entangled quasiparticles, which motivates the interest in such devices. To lowest 
order of the perturbation theory in the small transparency of the junctions, the two contributions 
cancel and dI1/dV2=0. Consequently, much effort – both experimentally and theoretically – is 
devoted to identifying scenarios where this cancellation can be overcome. 
In [B2.6:8,11,12,29], a microscopic theory of non-local electron transport in ballistic three-terminal 
FSF and NSN structures with spin-active interfaces was developed in the frame of the quasiclassical 
Eilenberger formalism. This theory demonstrates that crossed Andreev reflection in such devices is 
highly sensitive to electron spins and yields a rich variety of properties of non-local conductance 
which are described non-perturbatively at arbitrary voltages, temperature, spin-dependent interface 
transmissions and their polarizations. One of the striking predictions of this theory is that no crossed 
Andreev reflection can occur in structures with fully open interfaces [B2.6:8,11].  

Further interesting effects in these structures are related to spin-sensitive Andreev reflection 
emerging in FSF structures in the limit of a ‘strong’ ferromagnet (or a half metal) [B2.6:11]. In 
particular, the presence of spin-active scattering at the magnetic interfaces leads to a complicated 
subgap structure of the non-local conductance. Recently [B2.6:29], we were able to show that this 
can be fully understood by CAR und EC processes mediated by the interface bound states, which 
are induced  by the spin-rotation effect (Fig.9) at both interfaces. Moreover, we found that these 
bound states effectively interact, repelling each other if the junction is short and if the states are 
degenerate in energy. This resembles the hybridization of atomic orbitals when atoms are bonded in 
a molecule. 

 
Figure 9. The setup is shown in the upper left, two ferromagnetic electrodes are attached to a 
superconductor. Spin-active scattering at the two interfaces results in two pairs of Andreev bound 
states interacting with each other. On the right, the bound state energy is plotted against the length 
of the junction (top panel) for parallel (left) and antiparallel (right) orientation of the magnetization 
in the two FM electrodes. In the lower panel, the bound state position is plotted against the spin-
rotation angle theta. The sketch on the lower left illustrates how the CAR and EC contribution to 
the non-local conductance can be understood as tunneling processes through these interface bound 
states. From Ref. [B2.6:29]. 

Complementary to the work on ballistic heterostructures, we also investigated non-equilibrium and 
disorder effects in NSN structures. This includes in particular the interplay between crossed 
Andreev reflection (CAR), elastic co-tunneling (EC), and charge imbalance, the latter being a 
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In a setup where two ferromagnetic electrodes are attached to a superconductor, Andreev bound states are
induced at both ferromagnet/superconductor !FM/SC" interfaces. We study how these states propagate through
the SC and interact with each other. As a result of this interaction, the energetic positions of the Andreev states
are not anymore determined solely by the magnetic properties of a single interface but also depend on the
interface distance and the relative magnetization orientation of the FM contacts. We discuss how these bound
states show up as distinct peaks in the nonlocal conductance signal and lead to marked asymmetries with
respect to the applied voltage. We relate our results to nonlocal crossed Andreev and elastic cotunneling
processes.
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Surface states in solid-state physics have inspired a re-
newed strong activity, as they lead to insight into fundamen-
tal questions related to topology, conflicting types of order,
or new types of excitations. Examples are spin Hall effect
edge states in mercury-telluride quantum wells and other to-
pological insulators1 or Andreev surface states in unconven-
tional superconductors.2 The presence of Andreev bound
states !ABS" at energies below the superconducting gap
plays a prominent role in transport through heterostructures
involving superconductors and forms a topic of continuing
and long-standing interest. Such states can arise, e.g., due to
multiple Andreev reflections at both interfaces of a SC-
insulator-SC junction and are directly related to the Joseph-
son current through the junction.2 Furthermore, the impor-
tance of a magnetically active interface between a SC and
FM has been pointed out. Scattering on such a surface leads
to spin mixing and the creation of subgap ABS at the SC/FM
interface.3,4 Such states influence the properties of, e.g.,
single SC/FM tunnel junctions5,6 and SC/FM/SC Josephson
junctions.4,7,8

When two metallic leads are connected to a SC, an elec-
tron injected into the SC from one lead can combine to form
a Cooper pair with an electron from the other lead, leaving a
hole.9 This so-called crossed Andreev reflection !CAR" pro-
cess competes with elastic cotunneling !EC", in which the
incident electron is transmitted to the other lead via virtual
states in the SC. Thus, the nonlocal !NL" conductance,10 i.e.,
the current response in one lead to the voltage bias in the
other has opposite sign for CAR and EC. In fact, CAR and
EC processes cancel each other for tunnel contacts.11 This
cancellation is lifted at higher orders in the transmission,12

for FM contacts,11–14 or in the presence of interactions.15

Disorder effects have also been addressed.16 Although solid
theoretical progress has been made, the role of ABS in the
NL conductance has not been elucidated.

In this Rapid Communication, we consider the nonlocal
setup shown in Fig. 1, where two FM point contacts are
attached to a ballistic SC region. At each of the two SC/FM
contacts subgap ABS form, which show up in the Andreev

spectrum.4,6 They propagate on a coherence length scale #
through the SC. Interestingly, we find that these states inter-
act with each other so that their energetic position depends
on the relative magnetization orientation of the interfaces.
We study the profound influence of this interaction on the
NL conductance GNL=!IR /!VL through the device when
voltages VL and VR are applied across the contacts. For iden-
tical contact parameters, we find that for parallel !P" magne-
tization, GNL is asymmetric in VL, whereas it stays symmet-
ric in the antiparallel !AP" configuration. Such !a"symmetries
are explained with an intuitive picture based on the ABS in
the system.

Transport properties of heterostructures involving SCs are
conveniently described using quasiclassical !QC" Green’s
functions !GFs", ĝ!v!F ,R! ,$", which depend on the Fermi ve-
locity v!F, the spatial coordinate R! , and the quasiparticle en-
ergy $. They are obtained from the microscopic GF by inte-
grating out oscillations on the Fermi wavelength scale and
obey the Eilenberger equation

i%v!F · "R! ĝ + #$&̂3 − '̂, ĝ$ = 0̂ !1"

subject to the normalization condition ĝ2=−(2. The “hat”
refers to the 2)2 matrix structure of the propagator in
particle-hole !Nambu" space and '̂ is the SC order param-
eter. Within our approach, the exchange energy is incorpo-
rated by different Fermi velocities v!F* and momenta p!F* in
the spin bands.8,17 Thus, all elements of the SC propagators,

superconductor (SC)

θL

θR

ferromagnetferromagnet (FM)

VL
V = 0S VR

FIG. 1. !Color online" Sketch of the considered FM/SC/FM
setup with two tunneling point contacts. A nonlocal scattering event
which involves both contacts is indicated.
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bias state exists for L=! ln!tan" "
2 #!. The propagation of ABS

split peaks through the SC is sketched in the inset of Fig.
3"c#.

In the AP case, there are two ABS at energies #$%
AP

= #& cos" "
2 # in the limit L /!→%. In terms of Fig. 2"b#, the

negative energy state corresponds to the ABS that propagated
from the other interface. Its weight is therefore reduced "it is
zero for L /!→%#. As the interface distance decreases, this
state gains weight and both ABS repel each other, entering
the continuum at L=0. To first order, their energies are
#$%

AP# 1
2& tan"

2 e−"2L/!#sin""/2#.
The influence of the spin-mixing angle " is depicted in

Figs. 3"c# and 3"d#. Increasing " moves all states deeper
inside the gap. For the P case, the second ABS only appears
for values "'2 arctan"L /!#. In the AP case, the negative-
energy state is weakened as it must propagate through the SC
to reach the right interface.

The ABS show up in the transport properties of FM/
SC/FM heterostructures, in particular, in the NL conductance
GNL. Assuming a constant current density j over the contact
area, the spin-resolved NL current is

IR( =
SLSR cos")L#cos")R#

L2 j(, "5#

where SL"R# is the area of the left "right# contact, L again the
distance between the contacts, and )L"R# is the impact
angle at the left "right# interface "see Fig. 1#. The
current density j!( at a point R! in the right electrode is
j!(=eN($ d$

8*iTr%+3v!F(ĝ(
K"v!F( ,R! ,$#&, where N( is the normal

state DOS for spin ( in the right FM. GNL is given by
GNL↑+GNL↓ with GNL(=!IR( /!VL, where VL is the left lead
voltage. Only the trajectory connecting both contacts con-
tributes to GNL and the relevant Keldysh GF ĝ(

K can be cal-

culated from a generalization of Eq. "1# and the boundary
conditions at the interfaces.17

The clearest ABS signature occurs for high spin-mixing
angles "ABS deep inside the gap# and for the tunneling limit
"ABS narrow and well defined#. Figure 4 shows GNL for such
a set of parameters. A peaked structure is visible, hinting at
the subgap states, with a marked voltage asymmetry in the
case of P magnetization. These observations will now be
explained with the help of Fig. 5.

For voltages eVL that align the Fermi energy in the left
FM with a spin-resolved ABS energy $b in the SC, a quasi-
particle with the corresponding spin can tunnel from the FM
into the SC. In case of EC, the particle has to tunnel to the
same spin band at the same energy in the right electrode,
while for CAR, an electron with energy −$b in the opposite
spin band at the right interface is absorbed by the SC to form
a Cooper pair "see Fig. 5#. Both CAR and EC thus involve
"to lowest order# two transmission processes. The peak
height in GNL( at voltage eVL= #$b is given by T(#

L ·T(#
R for

EC and T(̄#
L ·T(,

R for CAR, where the T are effective trans-
mission coefficients involving the product of the relevant
spin-resolved transmission probability and ABS peak height
at the left and right interface. The relative height of CAR and
EC peaks in different magnetization geometries can be fully
understood with this simple picture.

As an example, we consider !t↑"↓#
L !2= !t↑

R!2'T and
!t↓"↑#

L !2= !t↓
R!2'+ with +-T.1 in the P "AP# configuration

sketched in Fig. 5. In the P case, there is a single
spin-resolved state at energies #$b and all states have the
same weight WP at the interfaces. The EC conductance peak
thus scales as T↑+

L T↑+
R =T2WP

2 "T↓−
L T↓−

R =+2WP
2# for positive

"negative# energies and the voltage asymmetry in the EC
signal in Fig. 4"a# is due to the different transmissions for
spin up and spin down. The CAR conductance scales as

FIG. 3. "Color online# Spin-up DOS at the right interface vs L
"upper panel# and " "lower panel#, both for ("a#–"c#) P and ("b#–"d#)
AP magnetization. Dashed lines are analytical approximations "see
text#. Inset: propagation of the split ABS between the interfaces.
Parameters in "a# and "b#: /=0.9 and "=0.7*. In "c# and "d#:
/=0.9 and L=2.0!. Inset: "=0.7* and L=2.0!.

FIG. 4. "Color online# CAR and EC contributions for ("a#–"c#) P
and ("d#–"f#) AP magnetization of the FM contacts. Transmission
coefficients: ("a#–"c#): t(

L= t(
R, ("d#–"f#): t(

L= t(̄
R with !t↑

R!2=0.14 and
!t↓

R!2=0.07. For other parameters see legends of "b# and "e#.
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−T↑+
L T↓−

R =−T↓−
L T↑+

R =−T!WP
2, both for eVL= "#b, and is there-

fore symmetric in eVL. As a result, the total NL conductance
in Fig. 4!c" changes sign so that one could switch between
CAR or EC by tuning eVL. The splitting of the conductance
peaks for longer lengths #dashed curves in Figs. 4!a"–4!c"$ is
due to the ABS repulsion discussed in Fig. 3!a". In the AP
case, both spin states are present at every ABS energy so
CAR and EC contain a contribution from each one. The rel-

evant expressions are summarized in Fig. 5. We define
wAP!WAP" as the height of the smaller !larger" ABS peak !for
Fig. 4, solid lines, #wW$AP=0.45WP

2". In agreement with
Figs. 4!d"–4!f", CAR and EC are now found to be symmetric
in eVL.

In more general cases, where %$L%! %$R% as in the dotted
curves in Fig. 4, the total NL conductance shows peaks at
four ABS energies !compare to Fig. 2". Their weight can be
determined analogously to the considerations above. For ex-
ample, for Fig. 2!c" and 2!d" there are bound states at "#b1
and "#b2 !with %#b1%% %#b2%". For the P case, similar expres-
sions as in Fig. 5 hold with WP

2 replaced by #w!W!$P, where
!! &1,2' labels the bound states. In the AP case, the EC
contribution at "#b! is T!#w!W!$AP and the CAR contribu-
tions are asymmetric in voltage: for eVL= &−#b1 ,
−#b2 ,#b2 ,#b1' they are &−!2 ,−T2& ,−!2& ,−T2'#w1W1$AP with
&= #w2W2 /w1W1$AP.19 The corresponding relative contribu-
tions to GNL are &! ,−T& ,!& ,−T'!T−!"#w1W1$AP.

In Fig. 5, we also discuss the spin currents GNL↑−GNL↓
resulting from CAR and EC processes. Interestingly, in the
AP case the nonlocal spin current results solely from the
CAR process as the EC contributions cancel in the tunneling
limit. In contrast, for the P case, CAR and EC currents in the
right lead are both fully spin polarized.

In conclusion, we studied subgap Andreev states in a FM/
SC/FM setup. Due to an interaction between the bound states
induced at the two SC/FM interfaces, their energetic posi-
tions depend on the relative interface magnetization orienta-
tion. This leads to asymmetries of the NL conductance,
which we explain in terms of CAR and EC processes with a
simple picture based on the Andreev state positions and their
weight, thereby clarifying the role of Andreev states in NL
conductance experiments.
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FIG. 5. !Color online" Sketch of the spin-up !positive axis" and
spin-down !negative axis" Andreev states at the FM/SC interfaces
for !a" P and !b" AP orientation of the contact magnetizations. CAR
and EC processes are shown and expressions for obtaining their
relative size are given in the table.
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difference in the chemical potentials of quasiparticles and pairs induced by quasiparticle injection. 
In [B2.6:10] we studied three-terminal NSN structures modeled by a chaotic superconducting 
quantum dot attached to one superconducting and two normal electrodes. This formulation allows 
accounting for non-equilibrium effects and disorder in the superconductor. We could demonstrate 
[B2.6:10,17] that the combination of two competing processes – Andreev reflection and charge 
imbalance – yields a pronounced peak in the temperature dependence of non-local resistance, which 
fits to recent experimental observations by Beckmann et al. (CFN subproject B2.7). 
In Ref. [B2.6:24] we have incorporated the following additional effects into the theory: (i) 
proximity effect in the normal leads, (ii) inverse proximity effect in the superconductor and (iii) 
arbitrary transparency of the junctions. We have demonstrated that the combined effect of all these 
phenomena results in negative dI1/dV2, i.e. EC turns out to be stronger than CAR. At the same time, 
in the experiments positive dI1/dV2 is also often observed. In particular, the experiment [B2.6:30] 
suggests that positive value of the non-local conductance is most probably related to the Coulomb 
interaction between electrons. We have shown that positive dI1/dV2 may indeed be a result of 
Coulomb interaction in a certain range of parameters [B2.6:31]. It may also be observed under ac 
bias [B2.6:25]. 
 

7. International Workshop 
The physics described in the report above was in part the subject of an international Workshop on 
“Spin helicity and chirality in superconducting and semiconductor nanostructures: novel 
phenomena and emergent functionality’’, which M. Eschrig and G. Schön had organized in 
Karlsruhe together with Ilya Vekhter. Details of the workshop are shown below. 
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International Workshop in Karlsruhe 
 
“Spin helicity and chirality in superconducting and semiconductor nanostructures: 
 novel phenomena and emergent functionality’’ 
 
July 13-17 2008, Karlsruhe 
Web page: http://i2cam.org/conference/Karlsruhe2008/ 
 
Organizers:  
Matthias Eschrig and Gerd Schön (University of Karlsruhe, Germany) 
Ilya Vekhter  (Louisiana State University, USA) 

We have organized a highly interactive workshop involving researchers working in areas of:  

• spin quantum hall effect and chiral transport in semiconductors,  
• superconductor-chiral magnet nanostructures,  
• chiral spin order in magnetism and superfluidity,  
• superconductivity without inversion symmetry,  
• adjacent fields.  

Since there is much overlap between methods and phenomena in these diverse areas, the workshop 
aimed to establish the connections and foment new understanding across the subfield boundaries 
among both theorists and experimentalists who participate in the workshop. 

The workshop has been partially financed by I2CAM, USA (30.000 $), partially by CFN (8.000 €), 
and partially by Forschungszentrum Karlsruhe (5.000 €). 

Participants: 
Prof. Phil Adams, LSU, USA 
Dr. Sergey Artyukhin, Groningen, Netherlands 
Prof. Yasohiro Asano, Hokkaido, Japan 
Dr. Samvel Badalyan, Regensburg, Germany 
Dr. Detlef Beckmann, Karlsruhe, Germany 
Dr. Kirsten v. Bergmann, Hamburg, Germany 
Dr. Benedikt Binz, Köln, Germany 
Prof. Alexei Bogdanov, Dresden, Germany 
Dr. Philip Brydon, Stuttgart, Germany 
Prof. Maximilien Cazayous, Paris 7, France 
Prof. Thierry Champel, CNRS, France 
Dr. Olga Dimitrova, ICTP, Italy 
Prof. Konstantin Efetov, Bochum, Germany 
Prof. Yakov Fominov, Landau Institute, Russia 
Dr. Gernot Goll, Karlsruhe, Germany 
Prof. Daniel Khomskii, Köln, Germany 
Dr. Alexey Kovalev, Texas A&M , USA 
Dr. Miodrag Kulić, Q-Spintronics 
Dr. Tomas Löfwander, Chalmers U, Sweden 
Sabrina Leslie, Berkeley, USA 
Jacob Linder, Trondheim, Norway 
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Dr. Dirk Manske, Stuttgart, Germany 
Prof. Jan Martinek, Poznan, Poland 
Prof. Eugene Mishchenko, Utah, USA 
Prof. Laurens Molenkamp, Würzburg, Germany 
Prof. Dirk Morr, UI-Chicago, USA 
Prof. Satoru Nakatsuji, Tokyo, Japan 
Dr. Tamara Nunner Berlin, Germany  
Prof. Victor Petrashov, Royal Holloway, UK 
Prof. Christian Pfleiderer, Munich, Germany 
Dr. Jana Poltierova Vejpravova, Prague, Czech Rep. 
Dr. Stephan Rachel, Karlsruhe, Germany 
Prof. Zoran Radović, Belgrade, Serbia 
Prof. Anatoli Sidorenko, Kishinev, Moldova 
Prof. Manfred Sigrist, Zurich, Switzerland 
Mihail Silaev, Nizhni Novgorod, Russia 
Prof. Jairo Sinova, Texas A&M, USA 
Prof. Masahito Ueda, Tokyo, Japan 
Dr. Anton Vorontsov, Wisconsin-Madison, USA 
Prof. Shoucheng Zhang, Stanford, USA 
Prof. Guo-qing Zheng, Okayama, Japan 
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