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Introduction 
 
Graphene [1] is a particularly intriguing two-dimensional structure with the quasi-relativistic 
dispersion law that has recently burst into the solid state physics. In 2004, researchers of 
Manchester University (UK) have succeeded to manufacture a monoatomic graphite layer ---
graphene --- on an insulating substrate [2,3,4,5]. This technological breakthrough has  attracted a 
great deal of attention of leading experimental and theoretical groups over the world. In a very short 
time, a new area of research --- the study of graphene-based structures --- has emerged and become 
one of key research directions in the material science and condensed matter physics, see Ref.7 for a 
review. The reason for this is exceptional properties of graphene that make this material highly 
interesting from the point of view of both fundamental physics and potential applications [1], most 
prominently, the carbon-based nanoelectronics. A.Geim and K. Novoselov were awarded the Nobel 
Prize 2010 for the discovery of graphene.  
 
The project is intended to develop a comprehensive theoretical picture of electronic transport in 
graphene structures, involving all the key ingredients of modern nanoscience: namely, quantum 
interference, quantum criticality, disorder-induced mesoscopic fluctuations, and Coulomb 
correlations. The emphasis is put on transport properties of disordered two-dimensional graphene-
based systems; the localization and strong correlations in quasi-2D (multi-layers) and quasi-1D 
systems such as graphene nanoribbons and carbon nanotubes are also studied within the project. 
The objectives of the project are expected to be particularly relevant to the rapidly growing field of 
nanotechnology, especially in the emergent carbon-based nanoelectronics.  
 
 
 
 
 
 
 
 
 
 
                                                                                                      (c) 
 

Fig. 1.   (a) Honeycomb graphene lattice consists of two sublattices A and B (open circles 
and dots); (b) Brillouin zone (two valleys are denoted as K and K´ ); (c) graphene 
bandstructure. 

 
A hallmark of graphene is its unconventional electronic spectrum (Fig. 1). Specifically, low-energy 
excitations in graphene are “relativistic” Dirac fermions, with an effective “light velocity” 106 cm/s.  
This leads to remarkable electronic properties of this material that have been revealed by transport  
measurements [1,4,5]. In particular, graphene shows anomalous, half-integer quantum Hall effect, 
which is observed up to room temperature, whereas it disappears at 30 K in the best semiconductor 
structures. Another remarkable discovery is that the conductivity of the undoped (zero gate voltage) 
graphene in a broad temperature range (from 300 K down to 30 mK) is essentially independent of 
temperature and has a value close to the quantum e2/h (times four, which is the total spin and valley 
degeneracy). 
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From the point of view of application, it is important that the electron concentration can be  varied 
by a gate, so that graphene can be used to realize a field-effect transistor. Further, a gap can  be 
engineered and tuned in graphene-based structures. Moreover, it appears to be possible to realize a 
room-temperature single-electron transistor on the basis of graphene [1]. These findings open a way 
for developments of novel graphene-based electronics [1]. In addition to the nanoelectronics, the 
extraordinary electronic, thermal, and mechanical properties of graphene allow for various further 
applications [1], such as composite materials and sensors for individual molecules. Study of 
electronic transport in disordered graphene will lead to the major advancement in understanding of 
fundamental properties of systems with quasi-relativistic carriers, including localization, quantum 
criticality, and a novel type of the quantum Hall effect. This is expected to become a new paradigm 
in the modern condensed-matter physics and promote the development of a new, graphene-based, 
nanoelectronics. 
 
We have started to work on electronic properties of graphene in the early 2006, within the CFN 
project B2.11. Our central achievement [6] ([B2.11:6]) was development of the theory of transport 
in graphene in the presence of different types of disorder. We have shown that the character of 
randomness (strength of scatterers and valley/sublattice symmetries) is of crucial importance for 
transport properties of graphene. Specifically, it is important (i) whether the individual scatterers are 
strong or weak and (ii) what is the symmetry of the disorder in the sublattice and valley space. We 
have used a combination of theoretical approaches, including self-consistent Born approximation, 
self-consistent T-matrix approximation, and renormalization group. Within the renormalization 
group approach, we have determined a complete set of one-loop equations governing the evolution 
of coupling constatnts for all symmetries of disorder with the length on ballistic scales.  
 
We have shown, that, away from half filling, the concentration dependence of conductivity is linear 
(with logarithmic corrections) for strong scatterers (unitary limit), σ ~ ne lnne, while it is only 
logarithmic in the case of weak scatterers (Gaussian disorder). We have constructed a “phase 
diagram”, showing which of these types of behavior should be expected for given microscopic 
parameters of the disorder. For the physically important case of Coulomb impurities and ripples, 
which are characterized by long-range 1/r potentials, the conductivity behavior is linear as for 
strong imurities (but without logarithmic correction), σ ~ ne . The linear behavior of the conductivity 
obtained for strong and long-rang scatterers agrees with the experimental findings, demonstrating 
that one of these kinds of disorder is dominant in experimentally studied structures. 
 
Starting from the year 2007, the graphene-related activity was split into a separate CFN project --- 
the present one (originally B2.14, since 2009  B1.8). 

 
1.  Conductivity of disordered graphene at half filling 
 
In Refs. [B2.14:1, B2.14:2] we have studied electron transport properties of graphene with different 
types of disorder at half filling. We have shown that the transport properties of the system depend 
strongly on the symmetry of disorder. We have demonstrated that the localization properties of 
graphene are governed by the chiral (C), time-reversal (T), and valley () symmetries of disordered 
graphene Hamiltonian, in combination with the nontrivial topology of Dirac fermions.  
 
We have identified two broad classes of randomness in graphene --- chiral disorder (preserving 
chiral symmetry of clean graphene) and long-range disorder (not mixing the two valleys) --- leading 
to the lack of localization and emergence of quantum criticality and associated universal minimal 
conductivity (see Table 1).  We have obtained the exact value of minimal conductivity 4e2/h in the 
case of chiral disorder. For long-range disorder (decoupled valleys), we have derived the effective 



B1.8   Mirlin, Gornyi 

 
 

4�  

field theory --- the nonlinear sigma-model. In the case of smooth random potential, it is a 
symplectic-class sigma model including a topological term with . As a consequence, the 
system is “topologically protected” from Anderson localization, in line with the remarkable 
experimental finding.  We have proposed the two scenarios (see Fig. 2, right panel): either the 
system is at a quantum critical point with a universal value of the conductivity of the order of e2/h, 
or the  conductivity grows with increasing the system size towards the perfect metal. Recent 
numerical simulations [8] have supported the second scenario. 
 
When the effective time reversal symmetry is broken, the symmetry class becomes unitary, and the 
conductivity acquires the value characteristic for the quantum Hall transition.  Using the derived 
field theories, we have proposed the beta-functions governing the scaling of the conductivity in the 
unitary (charged impurities + ripples) and symplectic (charged impurities) symmetry classes, see 
Fig. 2. 
 
 
 
 
 
 
 
 

 Fig. 2.  Renormalization group flows for unitary (left) and symplectic (right) universality 
classes. Red lines correspond to the sigma models with topological term; dashed 
lines correspond to In the symplectic case (charged impurities, right panel), the 
two scenarios are possible: either with a new critical point 

Sp  (solid line) or with an 
always positive beta-function (long-dashed line).  

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
   



B1.8  Mirlin, Gornyi 

 
 

5�  

 
 
 
Remarkably, Dirac fermions in graphene with different types of disorder may give rise to all 
possible types of criticality emerging in the context of Anderson localization in 2D systems, see our 
recent review Ref. [9].  
 
 
 
 2.  Theory of Anomalous Quantum Hall Effects in Graphene 

 
The key feature of graphene is the massless Dirac type of low-energy electron excitations (Fig. 1). 
This gives rise to a number of unusual physical properties of this system distinguishing it from 
conventional two-dimensional metals. One of the most remarkable properties of graphene is the 
anomalous quantum Hall effect. It is extremely sensitive to the structure of the system; in particular, 
it clearly distinguishes single- and double-layer samples.  
 
In Ref. [B2.14:7] we have developed the theory of disordered graphene in strong magnetic fields 
(quantum Hall regime). We have demonstrated that the Landau level structure by itself is not 
sufficient to determine the form of the quantum Hall effect (QHE). The Hall quantization is due to 
Anderson localization which, in graphene, is very peculiar and depends strongly on the character of 
disorder.  It is only a special symmetry of disorder that may give rise to anomalous quantum Hall 
effects in graphene.   

 
We have concentrated on the experimentally relevant case when the randomness preserves one of 
the chiral symmetries of the clean Hamiltonian and/or does not mix valleys. In particular, a disorder 
model dominated by ripples (random distortions in a honeycomb lattice) has been analyzed. 
Another disorder model which we have investigated is that of  Coulomb impurities, with dominant 
intravalley scattering. According to our  recently developed classification [6, B2.14:2], ripples 
represent the chiral type of disorder, whereas the charged impurities in the absence of magnetic 
field belong to the symplectic symmetry class owing to the pseudospin structure of Dirac 
Hamiltonian. Further, both models give rise to non-trivial topological properties of the 
corresponding low-energy theory. The topology manifests itself in the experimentally observed 
half-integer quantization of the Hall conductivity.  We have also studied how a weak intervalley 
scattering induces a crossover from the half-integer to the integer QHE with lowering temperature.  
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Fig. 3.  Renormalization group flow of xx and xy in graphene with decoupled and mixed 
valleys. Dotted/dashed lines are separatrices of the flow for graphene with 
decoupled/mixed valleys. Open circles are unstable fixed points corresponding to 
quantum Hall transitions. Stable fixed points (plateaus) are shown as disks. Two solid 
curves demonstrate a possible flow towards even- and odd-plateau fixed point for a 
model with weakly mixed valleys. Each curve has a cusp when the running scale reaches 
the intervalley scattering length. 

 
Using the sigma-model formalism and the renormalization group approach (Fig. 3), we have 
analyzed the symmetries of disordered single- and double-layer graphene in magnetic field and 
identified the conditions for anomalous Hall quantization. Specifically:  
(i) a smooth random (scalar) potential which does not couple the valleys gives rise to the odd QHE,  
dashed line in Fig. 4 (left);  
(ii) the valley mixing splits the odd quantum Hall transitions and restores the ordinary Hall 
quantization,  solid line in Fig. 4 (left). For weakly mixed valleys the crossover from the odd to 
ordinary QHEs occurs at parametrically low temperatures, Fig. 4 (right). We have estimated the 
crossover temperature for the realistic model of Coulomb impurities as T ~ 100mK, which is still 
accessible  in experiments on graphene;  
 

 
Fig. 4. Left panel: Quantum Hall effect in graphene with smooth disorder at zero 
temperature. Hall conductivity as a function of the filling factor n: odd (decoupled 
valleys, dashed line) vs normal (weak valley mixing, solid line) quantization. Inset shows 
the energy dependence of the density of states. The state in the center of Landau level is 
delocalized (dashed lines) when the valleys are decoupled. The valley mixing splits this 
delocalized state (solid lines).  
Right panel: Quantum Hall transition at finite temperature. A double step in xy and a 
double peak in xx (solid lines) require temperature lower than the intervalley scattering 
(mixing) rate.  Otherwise a single broadened quantum Hall transition is seen (dashed 
lines). 

 
(iii) ripples or dislocations (random vector potential preserving the chiral symmetry) lead to a 
“classical” QHE with the linear dependence of  xy  on the filling factor,  Fig. 5 (left), around the 
half filling; 
(iv) in double-layers, a double-step QHE transition at zero carrier concentration arises for disorder 
smooth on the scale of magnetic length, Fig. 5 (right).  
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Fig. 5.  Left panel: “Classical” QHE in graphene with chiral disorder (random vector 
potential). Chiral symmetry protects degeneracy of the lowest Landau level (Inset: delta-
function in the density of states). Hall conductivity is a linear function of carriers 
concentration while the lowest Landau level is being filled. In Abelian case (ripples) only 
odd plateaus appear away from zero energy (dashed line). Non-Abelian gauge disorder 
(dislocations) split quantum Hall transitions as shown by solid line. 
Right panel: QHE in a double-layer graphene with smooth disorder (decoupled valleys). 
Degeneracy of the lowest Landau level is twice larger than for other levels. Double step 
at zero filling factor (dashed line) is split when the disorder has finite correlation length d. 
Inset shows the density of states and positions of delocalized states (solid lines). Two 
such states within the lowest Landau level are degenerate (dashed line) in the limit of 
infinite d. 

 
Experiments on QHE in graphene thus provide information about the nature of disorder. The 
observation [4,5] of the odd-integer  QHE represents a direct evidence in favor [B2.14:7] of smooth 
potential disorder which does not mix the valleys (Coulomb impurities).  This also explains the 
absence of localization at zero magnetic field, as shown in Refs. [B2.14:1, B2.14:2]. 
 
3. Ballistic transport in disordered graphene 
 
In Ref. [B1.8:1, B1.8:2], we have developed the analytic theory of electron transport in disordered 
graphene in a ballistic geometry. In this paper, we have analyzed transport properties of a graphene 
sample in the “wide and short” geometry (W >> L,  Fig. 6), with disorder effects restricted to intra-
valley  scattering. This setup  allows one to define the “conductivity” = G L /W even for  ballistic 
samples with L much shorter than the mean free path l. Remarkably, in graphene at the Dirac point, 
such ballistic “conductivity” has a universal value  4e2/h in the clean case [10].  This setup was 
studied experimentally in Ref. [11] and the ballistic value  4e2/h was indeed observed for large 
aspect ratios. This geometry of samples is particularly advantageous for the analysis of evolution 
from the ballistic to diffusive transport. 
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Fig. 6. Schematic setup for two-terminal transport measurements. Graphene sample of 
length L and width W is placed between two parallel contacts. 

 
A complete description of the electron transport through a finite system involves not only the  
conductance but also higher cumulants of the distribution of transferred charge. The second moment 
is related to the current noise in the system. The intensity of the shot noise is characterized by the 
Fano factor F.  For clean graphene, this quantity was studied in Ref. [10]. Surprisingly, in a short 
and wide sample (W >> L) the Fano factor takes the universal value F = 1/3, that coincides with the 
well-known result for a diffusive metallic wire. The effect of disorder on the shot noise was studied 
numerically in Ref. [12], where the value of the Fano factor close to  0.3 was found across the 
whole crossover form ballistics to diffusion. The Fano factor close to 1/3 was also observed at the 
Dirac point experimentally [11].  When the chemical potential was shifted away from the Dirac 
point, the Fano factor decreased, then showed an intermediate shoulder around F = 0.15, and finally 
approached zero for largest gate voltages (carrier concentrations). 
 
While both diffusive and clean limits have been addressed analytically, only numerical and 
experimental results for the intermediate regime of ballistic transport through disordered samples 
have been available so far.  In Ref. [B1.8:2] we have filled this gap. We have calculated the full 
statistics of the charge transfer for both zero (the Dirac point) and large concentration of carriers. 
Starting from the clean limit (Fig. 7) and using the transfer-matrix technique, we have analyzed the 
evolution of the transmission distribution P(T) and, in particular, of the conductance G and the Fano 
factor F, with increasing system size L. 

 
 

Fig. 7.  Energy dependence of the (a) conductance and the (b) Fano factor of the clean 
sample with W >> L.  Solid lines show numerical results. Low energy asymptotics is 
plotted by dashed lines while dotted lines correspond to high energy limit. Asymptotical 
curves provide a very good approximation to the exact result in the whole range of 
energies. 
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Fig. 8.  Left panel: Schematic “phase diagram” of various transport regimes in the 
graphene sample with random scalar potential. The lines indicate crossovers between 
corresponding regimes. The shortest sample exhibits ultraballistic transport. When the 
length of the sample exceeds Fermi wave length, ballistic results apply. In a sample 
longer than the mean free path, diffusive regime establishes with the Drude conductivity 
and the Dorokhov distribution of transmission eigenvalues. The conductivity experiences 
antilocalization (symplectic symmetry class) in this case.  
Right panel: Schematic “phase diagram” for the case when more than one disorder type is 
present in the system. The ultraballistic, ballistic, and diffusive (lowest part) regimes are 
similar to the left panel. Once the diffusion is established, the antilocalization starts but it 
proceeds only till the length at which the time-reversal symmetry breaks down. At longer 
scales the system falls into the unitary symmetry class and exhibits weak (second-loop) 

localization. At exponentially long scale cor the quantum Hall critical state establishes. 
 
To take the randomness into account, we have developed a perturbative treatment of the transfer-
matrix equations. This approach has been supplemented by a renormalization-group formalism 
describing the renormalization of disorder couplings. This has allowed us to get complete analytical 
description of the transport properties of graphene in the ultraballistic (L<<) and ballistic ( << L 
<< l ) regimes (here is the Fermi wavelength inside the sample and l is the mean free path). We 
have also constructed “phase diagrams” of different transport regimes (ultraballistic, ballistic, 
diffusive, and critical) for graphene with various types (symmetries) of intra-valley disorder.  In the 
left panel of Fig. 8  we show the result for potential disorder (e.g., Coulomb impurities); the right 
panel of Fig. 8 illustrates the transport regimes in the case of generic disorder (e.g., Coulomb 
impurities plus ripples). 
 
Remarkably, for random scalar potential the transmission distribution function P(T) at zero energy 
appears to be the same in ultraballistic and diffusive limits (“Dorokhov distribution”): 
 
 
 
with the dimensionless conductivity  g = (h/4e2)Taking into account interference effects leads 
to the L dependence of g in this formula: 
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where (L) characterizes the renormalized strength of disorder. 
 
Most of the available experimental observations [11] reasonably agree with our results. In 
particular, the Fano factor has a value close to 1/3 at the Dirac point even in the presence of disorder 
and decreases when one moves away from the Dirac point, showing a tendency to saturate around 
F=0.15, which is not far from the value 1/8 we have obtained in the high-energy regime. 
 
In Ref. [B1.8:10]  we have explored the full counting statistics of the charge transport through an 
undoped graphene sheet in the presence of smooth disorder. At the Dirac point both in clean and 
diffusive limits, transport properties of a graphene sample are described by the universal Dorokhov 
distribution of transmission probabilities, see above. In the crossover regime, deviations from 
universality occur which can be studied analytically both on ballistic and diffusive sides. In the 
ballistic regime, we used a diagrammatic technique with matrix Green functions and showed that to 
second order in the disorder strength a correction to the universal counting statistics of the ballistic 
graphene does arise. We calculated this correction and demonstrated that it suppresses the Fano 
factor below the value 1/3. Further, we have analyzed the opposite limit of large system size, when 
the system is in the diffusive regime. Using the sigma model approach, we have identified 
deviations from the universal distribution in this regime as well. In particular, we have found that  
that the Fano factor returns to the value of 1/3 from below with increasing L (Fig. 9). The approach 
to 1/3 is however logarithmically slow. Our results compare well with recent numerical works 
[12,13].  
 

 
 
Fig. 9.  Fano factor as a function 
of conductivity. Solid lines show 
ballistic and diffusive results. 
Dashed line corresponds to the 
asymptotic value F = 1/3. Solid 
symbols are numerical results 
from Ref. 13, the size of rectangles 
corresponds to the error estimate. 
 
 
 
 
 

4. Transport in graphene with resonant scatterers. 
 
Strong scatterers (Fig. 10) produce a dramatic effect on the electron transport. In Refs. [B1.8:8, 
B1.8;9, B1.8:14], and [14] we have developed a novel general approach to the calculation of 
various transport properties of the graphene sample with strong impurities. This approach is based 
on the specifically designed unfolded representation of the scattering matrix of the system. It allows 
extremely efficient numerical simulations of the electron transport far overperforming the standard 
method of recursive Green’s functions. While complexity of the conductance calculation within the 
latter approach is polynomial in the system size (e.g., in the number of atoms), the algorithm based 
on the unfolded scattering matrix representation is polynomial in just the number of impurities.  
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Fig. 10. Ballistic graphene setup with 
various strong scatterers. Vacancies as 
well as atomic or molecular impurities 
can create midgap states. Metallic 
islands support quasi-bound states 
that can be tuned to the resonance. 
 
 

In Ref. [B1.8:8] we have computed the full counting statistics for the charge transport through an 
undoped graphene sheet in the presence of a small number of strong potential (scalar) impurities. 
We have considered the ballistic transport regime in which the sample size is smaller than the 
electron mean free path (low impurity concentration). This model was experimentally implemented 
in the samples on the SiO2 substrate. The ballistic transport is particularly relevant for suspended 
samples where much higher mobilities have been achieved. We have employed the phenome-
nological scattering approach and complemented it with the microscopic analysis based on the 
Green functions formalism. Treating the scattering off the impurity in the s-wave approximation, 
we have calculated the impurity correction to the cumulant generating function. This correction to 
the full counting statistics is determined by the position of impurity and the low-energy scattering 
length. The latter diverges when the impurity potential contains a quasi-bound state at zero energy. 
At such resonant conditions the impurity correction becomes universal. In particular, the 
conductance of the sample acquires a correction of 16e2/2h per resonant impurity, see Fig. 11 
(left). Our results are fully supported by numerical simulations with no adjustable parameters, see 
Fig. 11 (right). 
 

 
Fig. 11.  Left panel: Contribution to the conductance G and to the shot noise S from a 
resonant impurity placed at the center of a rectangular sample (at x0=L/2), as a function 
of the aspect ratio W/L. Inset: conductance and noise of a clean sample. 
Right panel: Correction to the conductance from a circular impurity at x0=L/2 as a 
function of u0a (where u0 is the height of the impurity potential and a is the radius of 
impurity). Solid line: numerical simulations [15] with the parameters a/L = 0.2, W/L = 6; 
dashed line: analytic result of Ref. [B1.8:8]. 

 
In Ref. [B1.8:8] we have studied the effect of resonant scatterers on the local density of states in a 
rectangular graphene setup with metallic leads. We have found that the density of states in a vicinity 
of the Dirac point acquires a strong position dependence due to both metallic proximity effect (Fig. 
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12, left panel) and impurity scattering (Fig. 12, right panel). This effect may prevent uniform gating 
of weakly-doped samples. We have also demonstrated that even a single-atom impurity may 
essentially alter electronic states (see Fig. 12, right panel) at low doping on distances of the order of 
the sample size from the impurity. 
 
 

 
 

Fig. 12.  Left panel: The local density of states (LDOS) of Dirac quasiparticles in ballistic 
graphene sample with metal boundaries and W/L = 10. The increase of the LDOS near 
the boundaries is due to the metallic proximity effect. Different curves correspond to 
different energy values εL/v = 0,2,4,8.  Right panel: The density plot for the LDOS at ε = 
0 for out-of-resonance (left) and resonance (right) conditions. The physical size of 
impurity is chosen as a = 0.05L, while the effect on the LDOS is determined by the 
effective scattering length ls. At resonance conditions, ls ≫ L, the LDOS is strongly 
enhanced in the large area, which is of the order of the system size L. 

 
Using the “unfolded scattering theory”, in Refs. [B1.8:14] and [14] we have studied electron 
transport of graphene with vacancies and revealed a rich phase diagram of various critical transport 
regimes. One example of critical scaling of conductance in graphene with vacancies is shown in 
Fig. 13. These results are not attainable with any other known computational tool. Potential further 
applications of the developed technique are not limited to graphene and include transport 
characteristic of any disordered systems. This new approach is particularly beneficial for studying 
systems with strong impurities and, in particular, close to metal-insulator transition, where all other 
known methods become inefficient.   
 
More specifically, in Ref. [B1.8:14] we have developed a theoretical approach to transport in 
disordered systems which describes an entire crossover from ballistic to diffusive or critical regime. 
The theory can be applied to study localization physics and criticality in a variety of different 
systems. We have used the theory to calculate the conductivity (and, more generally, the full 
counting statistics) in undoped graphene with resonant impurities. The conductivity increases 
logarithmically in the case of smooth resonant potential scatterers (symmetry class DIII) and 
saturates at a constant value for vacancies (class BDI), see Fig. 13. In the latter case, the behavior of 
conductivity depends on the vacancy distribution among the two sublattices (A and B) of the 
honeycomb lattice with concentrations nA and nB. Our results show highly non-trivial scaling flow 
and phase diagrams of random Dirac fermions in these classes. 
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Fig. 13.   Left panel: Conductivity of graphene as a function of the concentration of vacabcies n = 
nA + nB for various values of δ = (nA – nB)/n.   Right panel: Universal crossover between nA = nB 
and nA ≠ nB fixed points. 

 
 
In Ref. [14] we have theoretically proposed and numerically confirmed an extended classification of 
impurity sites in the graphene honeycomb lattice for the case of strongly-bound adatoms or 
vacancies. The classification is illustrated in Fig. 14 (left panel) by assigning colors to the lattice 
sites. The general analytical expression for the Dirac-point conductance of a graphene sample with 
two resonant on-site impurities is given as a function of impurity coordinates. The Dirac-point 
conductivity of graphene with a small number of randomly distributed adatoms is shown to be 
sensitive to the relative concentration of impurities at the sites belonging to different sublattices and 
having different colors (see Fig. 14, right panel). 
 
 
  
 

 
 

Fig. 14.   Left panel: Color scheme for vacancies or resonant adatoms. The impurity site is 
characterized by the phase                                       ,  where  ±  refers to the sublattice (A or B) and 
c = −1, 0, 1 denotes the colors (red, green, blue). The color scheme depends on the transport 
direction x.   Right panel: Conductance variation for an “armchair” sample with two vacancies (A 
and B). Changing the distance y between vacancies, the conductance jumps on the atomic scale 
between three different smooth curves corresponding to  = 0 (green disks),  = 2/3 (blue 



B1.8   Mirlin, Gornyi 

 
 

14�  

squares), and  = -2/3  (red diamonds). The numerical data agrees well with the analytical result, 
as shown by the corresponding solid curves. 

 
5. Graphene-based nanostructures. 
 
In Ref. [B1.8:7] we developed a transfer matrix approach to study ballistic charge transport in few-
layer graphene (Fig.15, left) with chiral-symmetric stacking configurations. We demonstrated that 
the chiral symmetry justifies a non-Abelian gauge transformation at the spectral degeneracy point 
(zero energy). This transformation proves the equivalence of zero-energy transport properties of the 
multilayer to those of the system of uncoupled monolayers. Similar transformation can be applied in 
order to gauge away a spatially dependent magnetic field and/or strain as well as  hopping disorder 
in the bulk of the sample. Further, we calculated, using the scattering approach, the full-counting 
statistics at arbitrary energy for different stacking configurations (Fig.15, right). The predicted gate-
voltage dependence of conductance and noise can be measured in clean multilayer samples with 
generic metallic leads. 
 

 
 
 

Fig. 15.  Left:  Schematic view of a rectangular trilayer graphene sample contacted by 
metallic leads.  Right:  Averaged Fano factor (with smeared Fabry-Perot oscillations) vs. 
chemical potential in transport through AB-stacked few-layer graphene. The horizontal 
line corresponds to F =1/8. The inset shows a comparison with the exact result (dashed 
curve) that shows Fabry-Perot oscillations.   

 
 
In Ref. [B1.8:3] the in-plane resistivity of highly oriented pyrolytic graphite (HOPG) was studied, 
both experimentally and theoretically.  The main focus was on the intermediate temperature range 
where next-to-nearest plane couplings are irrelevant and graphite can be thought of as a stack of 
graphene bilayers.  We have found that the temperature dependence of the in-plane resistivity is 
determined by a competition between those of the carrier number density, n(T), and of the scattering 
rate 1/τ. At temperatures below 50 K, the number density is practically independent of the 
temperature, while the scattering rate increases with the temperature; as a result, the resistivity 
increases with T. At temperatures comparable to the Fermi energy, the increase in n(T) almost 
compensates for that in 1/τ, leading to a quasisaturation of  ρab at T~300 K. However, full saturation 
never occurs because, as the temperature increases further, scattering off hard optical phonons, 
characterized by an exponential increase in 1/τ  with T, becomes important.  We provide a theory of 
this effect based on intervalley scattering of charge carriers by high-frequency, graphene-like 
optical phonons. This results in a further increase in ρab with T  (Fig.16). 
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Fig.16.  Measured temperature dependence of the 
in-plane resistivity of HOPG for warming (filled 
squares) and cooling (blank squares) temperature 
sweeps.  Dashed:  theoretical prediction for ρab(T) in 
the model containing scattering at impurities and 
soft phonons. Solid: fit using the model containing 
scattering at impurities, soft phonons, and 
intervalley scattering at hard in-plane optical 
phonons. Inset: overlap of the data for two different 
samples. The vertical scales were shifted for clarity. 
 
 
 
 

 
Motivated by recent proposals on strain engineering of graphene electronic circuits, we studied in 
Ref. [B1.8:11]  conductivity, shot noise and the density of states in periodically deformed graphene 
(Fig.17). We also proposed a way to characterize the quality of graphene superstructures on the 
basis of their transport properties. More specifically, we used the Dirac-Kronig-Penney model, 
which describes the phase-coherent transport in clean monolayer samples with an one-dimensional 
modulation of the strain and the electrostatic potentials. The exact results were compared to a 
qualitative band-structure analysis. We found that periodic strains induce large pseudogaps and 
suppress charge transport in the direction of strain modulation. The strain-induced minima in the 
gate-voltage dependence of the conductivity characterize the quality of graphene superstructures. 
The effect is especially strong if the variation in interatomic distance exceeds the value a2/l, where a 
is the lattice spacing of free graphene and l is the period of the superlattice. A similar effect induced 
by a periodic electrostatic potential is weakened due to Klein tunnelling. 
 
 

 
 
 
 
 

Fig.17.  Left:  Schematic illustration of the strain-modulated graphene setup with metal leads 
for x < 0 and x > L. The angle θ specifies the orientation of the honeycomb lattice with respect 
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to the transport direction x. Right:  Conductance and Fano factor for finite samples of strain-
modulated graphene comprising N=10 and N=50 supercells. Also shown are averaged 
expressions which correspond to the limit N→∞ and ignore contributions from evanescent 
modes. In a small vicinity of the Dirac point  (shown at the insets)  the transport is insensitive 
to strain due to the extended gauge invariance  and is dominated by the evanescent modes. 
 

 
6. Coulomb interaction in graphene: Relaxation rates and transport 
 
In Ref. [16], we have analyzed the inelastic electron-electron scattering in graphene using the 
Keldysh diagrammatic approach. We have demonstrated that finite temperature T strongly affects 
the screening properties of graphene. This, in turn, dramatically influences the inelastic scattering 
rates as compared to the zero temperature case. We have calculated the finite-T quantum scattering 
rate, Fig. 18 (left panel), which is relevant for dephasing of interference processes. We have 
identified an hierarchy of regimes, arising due to the interplay of a plasmon enhancement of the 
scattering and finite-temperature screening of the interaction. The lifetime of quasiparticles with 
energies close to the Dirac point has been found to be independent of the coupling constant. We 
have further calculated the energy relaxation rate and transport scattering rate, Fig. 18 (right panel). 
For all the three rates, we have found a non-monotonic energy dependence which has been 
attributed to the resonant excitation of plasmons. Finally, we have discussed the collision-limited 
conductivity of clean graphene as well as the expected behaviour of the high-temperature 
conductivity in the presence of disorder,. Our results complement the kinetic-equation and 
hydrodynamic approaches for the collision-limited conductivity. Our approach that employs the 
Keldysh formalism can be generalized for the treatment of physics of inelastic processes in strongly 
non-equilibrium setups. In particular, this framework is expected to allow us to investigate 
interaction effects on full counting statistics of the electron transport in graphene and to develop the 
theory of tunneling spectroscopy in strongly biased graphene setup.  
 

 
 

Fig. 18.   Quantum scattering rate (left panel) and transport scattering rate (right panel) due to the 
Coulomb repulsion in clean graphene for = 4 × 10−3 (double logarithmic scale), where αg =e2/vF 
and N is the number of independent  flavours (valleys, spin). Dots: exact values obtained by 
numerical evaluation; solid lines: analytical asymptotics. 

 
7. Optoelectronic and nonequilibrium properties of 2D electronic gases 
 
One of directions of our current and planned graphene research are optoelectronic and 
nonequilibrium properties of graphehe-based nanostructures.  This will open a number of 
fascinating possibilities, including controlled modfication of the Dirac spectrum by external fields 
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(optical driving or/and gate modulations), such as opening of spectral gaps, confinement of carriers, 
instabilities and quantum generation. It is very important to understand similarity and differences 
between graphene and more conventional 2D electron systems in semiconductor heterostructures. 
We have performed a systematic theoretical study of giant magnetoresistance oscillations induced 
in such structures by the microwave radiation [B2.14:3, B2.14:4, B2.14:5, B2.14:6, B1.8:4, B1.8:6, 
B1.8:12]. In ultra-high-mobility structures these oscillations lead to formation of regions of zero-
resistance states.   Using the quantum kinetic equation framework, we have classified the 
mechanisms of the influence of the radiation on the transport properties of 2D electrons in a 
transverse magnetic field  and evaluated the microwave-induced magnetoresistance. Our results are 
in agreement with key observations by a number of leading experimental groups worldwide. The 
methods we have developed in course of this study will be used in our research  on optoelelctronic 
and non-equilibrium properties of graphene nanostructures. 
 
In  Ref. [B1.8:13] quantum magnetooscillations in the microwave absorption and dynamic 
Shubnikov-de Haas oscillations were studied experimentally in a high mobility 2DEG. For this 
purpose a sensitive high-Q cavity technique was used and a special setup to avoid undesirable 
magnetoplasmon effects masking the quantum oscillations was developed. Our theory describes 
experimental results for the microwave-induced resistance oscillations (MIRO) and for the quantum 
magneto-absorption (QMA) oscillations on the same wafer with the same value of the quantum 
relaxation time and without any further fitting parameters (Fig.19). This provides a strong 
experimental support to our theory of MIRO and QMA based on inter-Landau-level transitions. 
This success paves the way for the development of the theory for graphene (work in progress) that 
will take into account the peculiar (non-equidistant) spectrum of Landau levels in this material 
(Fig.19, right). 

 
 

 
 

Fig. 19.   Left and middle: Disorder-assisted microwave absorption between distant Landau 
levels leads to quantum magnetooscillations in absorption, as confirmed experimentally 
[B1.8:13]. The related mechanism is in the origin of microwave-induced resistance 
oscillations and zero-resistance states.  Right:  Non-equidistant spectrum of Landau levels in 
graphene [17] is important for magnetooptic and non-equilibrium properties of graphene. 

 
The work [B1.8:5] was motivated by a recent experiment  on quantum Hall structures with strongly 
asymmetric contact configuration that discovered microwave-induced photocurrent and 
photovoltage magnetooscillations in the absence of dc driving. We showed that in an irradiated 
sample the Landau quantization leads to violation of the Einstein relation between the 
dcconductivity and diffusion coefficient. Then, in the presence of a built-in electric field in a 
sample, the microwave illumination causes photo-galvanic signals which oscillate as a function of 
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magnetic field with the period determined by the ratio of the microwave frequency to the cyclotron 
frequency (Fig.20), as observed in the experiment. The experimental observation of the effect 
requires an asymmetry in contact geometry or in material composition of two contacts which 
determines the direction of the current. At the same time, the obtained current voltage 
characteristics are shown to be independent of detailed potential profile in the sample provided the 
relative change in the electron density across the sample remains small. 
 
 
 
 

 
 
 
 

Fig. 20.  Left: Distribution function of 2D electrons and Landau levels in (a) a non-
equilibrium state with a constant electric field E in an infinite 2DEG and (b) an equilibrium 
finite 2DEG with a built-in electric field near a contact. Right: Microwave-induced 
photocurrent between the Corbino-like internal and strip-like external contact vs. magnetic 
field: (a) experiment [17], (b) theory [B1.8:5].   

 
 
Cooperations 
 
The work in B1.8 is carried out in cooperation with several CFN projects: 

• Experimental studies are performed in KIT shared research group “Electronic properties of 
graphene” (Danneau) and in B2.7, C4.1 (von Löhneysen)   

• Within B1.7 (Schön) numerical simulations of graphene are carried out. 
• Transport and optics of nanotube-based carbon nanostructures are studied in B1.9 (Krupke) 

and in C3.2 (Kappes).  
• Within C4.11 (Wölfle/Evers) and C3.11 (Evers) ab initio modeling of nanomechanical and 

electronic properties of graphene is performed. 
We also maintain close contacts and cooperation with leading theoretical (Lancaster, Madrid, 
Würzburg, Edinburgh, Tel Aviv) and experimental (Manchester, Stuttgart, Exeter, Delft, Geneva, 
Grenoble, Minneapolis, Chernogolovka) groups. 
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