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Modeling of Micro-Disk Resonator Arrays 
 
 
Introduction and Summary 
 
Waveguides and resonators comprise the basic building blocks for the realization of an integrated 
optics. Loosely speaking, waveguides transport light between elements and resonators are used to 
“store” the light by means of constructive interference. This means that in a resonator light bounces 
back and forth between mirrors or, for our purposes equivalently, light runs around in loops. 
Efficient “trapping” can only occur for selected frequencies – the resonance frequencies that very 
sensitively depend on the resonator’s geometrical and material properties. Upon judiciously 
coupling such resonators with other resonators and/or with one or several waveguides one can thus 
realize a number of more complex functional elements. For instance, one can functionalize the 
resonator’s surface in order to allow for the deposition of specific molecules or proteins. This added 
material will alter the resonator’s properties, for instance, its resonance frequency. As frequencies – 
more precisely frequency shifts – can be detected with extremely high sensitivity this suggests that 
efficient and highly parallel sensing schemes may be constructed based on coupled waveguide-
resonator systems. 
 
This utility of coupled waveguide-resonator systems presents a number of rather significant 
challenges regarding modeling. The structures to be investigated are generally characterized by 
vastly different length scales. To be specific, we focus on systems that are investigated 
experimentally in the group of Heinz Kalt within subproject A.5.4 Optical Biosensors on the Basis 
of Micro-Disk Resonators. In order to obtain high Q-values, the resonator structures are typically 
large compared to the operation wavelength while the (evanescent) coupling between resonator and 
waveguide involves a narrow gap with typical sizes of 1/10 of the operation wavelength. This 
suggests a dual approach for quantitative analyses. Exact numerical methods can be utilized to 
determine the spectral response of, say, a single resonator coupled to one or two waveguides. In 
addition, exact numerical simulations can extract effective parameters that are used as input 
parameters for effective descriptions based on coupled-mode theory. Such semi-analytical coupled-
mode approaches can be (and have to be) tailored to specific applications and their ranges of 
validity have to be gauged by comparing with corresponding exact numerical results. Once this has 
been accomplished, coupled-mode theory provides detailed insight into the underlying physics and 
thus allows for a educated optimization of the corresponding system. 
 
In order to accomplish the modeling task outline above, we have utilized the Discontinuous 
Galerkin Time-Domain (DGTD) method which we have been developed in subproject A1.2 Light-
Matter Interaction in Nano-Photonic Systems. DGTD combines spatial adaptivity through 
unstructured meshes with high-order spatial discretization and high-order time-stepping capabilities. 
In order to facilitate the above exact numerical simulation tasks, we have significantly improved the 
time-stepping characteristics well beyond what has originally been proposed [1-4] and have recently 
been able to adapt our code for high-performance-computation purposes using graphic processors. 
In addition, in collaboration with Dr. Kiran Hiremath (now Zuse-Institute Berlin) we have 
developed a coupled-mode theoretical (CMT) approach [5] that has allowed us to understand an 
unexpected effect of waveguide-coupled slotted-ring resonators. This effect allows to significantly 
modify the Q-value of certain resonances by rather minimal changes to the resonators’ 
specifications and, therefore, is rather well suited for sensing schemes and perhaps even for certain 
optomechanical applications..         
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1. Coupled Waveguide-Resonator Systems – Exact Numerical Approach via DGTD 
 
In order to illustrate the challenges associated with exact numerical modeling of coupled 
waveguide-resonator systems, we consider a two-dimensional example of a silicon micro-disk 
resonator (diameter 5 µm) that is coupled via a (relatively) gap of 232 nm to two silicon waveguides 
(width 300 nm) as depicted in Fig. 1. This four-port device is operated at wavelengths centered 
around 1.55 µm for light with an electric field polarized along the z-axis. 

 
Fig.1: Typical finite-element meshes (M1: top left, M2: top right, M3: lower left, M4: lower right) 
used for the calculations of resonance frequencies and spectra for a typical realization of a coupled 
resonator-waveguide system. In all computations we employ 4th-order polynomials to represent the 
field on each triangular element. Green and white shaded areas correspond to silicon and air, 
respectively, while red shaded areas denote perfectly matched layer absorbing boundaries. 
 
Determining the spectral properties of such a device is already challenging for a time-domain 
method – clearly, one would rather want to use a frequency-domain method in order to find the 
resonances and their Q-values. However, one should bear in mind that, eventually, we want to 
analyze fully three-dimensional structures such as the goblet-shaped structures developed by the 
group of Heinz Kalt [6]. These goblets have typical diameters of several 10µm so that a frequency-
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domain approach quickly runs into serious issues related to computational resources, notably 
memory consumption when solving the corresponding system of equations.  
 
Of course, there is no free lunch. The price one has to pay for using a time-domain approach is 
given by excessive CPU time consumption. However, here we have a certain degree of leverage as 
on DGTD, the time-stepper can be chosen almost arbitrary. For instance, for a 4th-order spatial 
discretization, we typically use a 4th-order low-storage Runge-Kutta scheme as initially proposed by 
Hesthaven and Warburton [7]. With this approach our DGTD-computations of the above device for 
require about 100 times less memory and are about 10 times faster than corresponding FDTD-
computations using the MEEP-package [8]. For the illustrative example described in Fig. 1, we 
display the field distribution of several modes of different radial order in Fig. 2. The corresponding 
spectra can be found in Fig. 3. 
 

 
Fig.2: Field plots of the Ez-component of the system depicted in Fig. 6 after excitation with 
waveguide modes of different frequencies: The left panel shows a first-order radial mode with 
wavelength 1.529µm, the center panel a second-order radial mode with wavelength 1.5112µm, and 
the right panel a third-order radial mode with wavelength 1.5357µm. 
 
 

 
Fig.2: Spectra for meshes M1 (crosses),M2 (circles),M3 (triangles) and M4 (squares). All 
calculations were done in fourth order. (a) shows a broader spectrum around the wavelength of 
interest, while (b) contains a close-up of the spectrum around 1.53 μm. 
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Obviously, the rather extreme accuracy required to obtain converged results has forced us to work 
on the time-stepping characteristics of the DGTD approach. Therefore, we have focused on 
constructing dedicated low-storage Runge-Kutta schemes that yield stability regions that are better 
adapted to the spectra of typical nano-photonic system operators [3,4] relative to the originally 
proposed scheme [7]. To make a long story short, we have managed to improve the execution speed 
of our code by about 40% to 50%, merely by changing 12 numbers within several thousand lines of 
code. In addition, we have introduced curvilinear elements [9] to better resolve rounded geometries.  
 
Only with these improvements have we been able to accurately simulate a slightly more complex 
setup, i.e., a waveguide-coupled slotted-ring resonator as described in the next section. 
 
2. Coupled Waveguide-Resonator Systems – Coupled-Mode Theory 
 
The principal aim of coupled-mode theoretical (CMT) approaches to complex photonic systems is 
to concentrate on the essential physics of the problem by considering the dominant modes of certain 
simpler subsystems and their coupling. This raises the question of which modes to consider (and 
which to leave out) and how good the corresponding approximations are. Very often, both questions 
can only be answered by comparing with exact numerical results for certain test systems. 
 

 
Fig. 4. Schematics for a slotted-resonator based 4-port device where the slot’s position inside the 
ring is varied. This slotted resonator is coupled to two identical straight waveguides that realize 
input and output ports. The device performance may be characterized via the power levels 
associated with the input ports, PI and PA (In- and Add-port), and the output ports, PT and PD 
(Through- and Drop-port), respectively. Within a coupled-mode theoretical approach this device is 
further decomposed into several functional elements. Two couplers, (I) and (II), delineated with 
dashed-line boxes, are connected via two identical segments of bent slotted waveguides of different 
length and each of these couplers is further connected to two identical input and output port 
waveguides (see Ref. [5] for more details). 
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As an illustration, we consider the construction of a CMT for systems such as the waveguide-
coupled slotted-resonator depicted in Fig. 4. Here, the input and output waveguides have been 
chosen such that they support only one propagating mode (actually two counter-propagating modes) 
for the frequency range for which operation of the device shall be considered. Similarly, the modes 
for a circular slotted waveguide can be found by a standard approach using cylindrical coordinates. 
In both cases, the results are mode profiles and propagation constants – in the case of the circular 
slotted waveguide they are complex, signaling that light is not strictly guided.  
 
A naïve CMT approach would consist in retaining only that mode of the circular slotted waveguide 
that exhibits the lowest losses. However, a comparison with exact numerical results quickly reveals 
that this is inadequate. Here, a word of caution is required. In order to obtain converged results for 
this system, we have had to push DGTD very hard. As a matter of fact, for the meshes depicted in 
Fig. 5 we have obtained convergence only when using 6th-order spatial discretization and 
curvilinear elements in the slot region. This analysis also reveals that one needs to take into account 
all the modes of the slotted ring resonator whose effective group index at the operation frequency 
exceeds the value of the background dielectric constant. In the present case, this amounts to 
considering the fundamental and 1st-order radial modes simultaneously, although they do exhibit 
substantially different imaginary parts in their propagation constants. 
 
The actual construction of the CMT is another matter for which we would like to refer to Ref. [5]. 
Suffice it to say that – as usual in most CMT approaches – we rely on an “adiabatic approximation” 
which disregards the backscattering processes into the counter-progating modes. This adiabaticity is 
less and less justified the closer we bring the waveguides to the slotted resonator. This is clearly 
seen in Fig. 6, where we display a comparison of the input-output characteristics for different 
waveguide-resonator separations.  

 
Fig. 5. Meshes that have been used for the DGTD computations of the slotted resonator device 
sketched in Fig. 5. From left to right, the slot position corresponds to η = 0.4, η = 0.5, and η = 0.7 
respectively. The computational domain is enclosed by perfectly matched layers as indicated by the 
finite-width outermost box. In order to determine the spectral response of the device a broad-band 
pulse for is injected in the upper left waveguide. The flux through the output ports is recorded and 
subsequently Fourier-transformed. 
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Fig. 6. Spectral response of the slotted resonator device depicted in Fig. 4 for a symmetric slot 
position (η = 0.5) for various minimal separations of the straight waveguides from the slotted 
resonator (see Ref. [5] for further details).  
 
Nevertheless, CMT captures the essential physics of the problem. This is illustrated in Fig. 7, where 
we display the input-output characteristics for different locations of the slot within the ring, i.e., 
different values of the parameter η. Actually, it is this parameter that adjusts the relative coupling 
strength between the modes of the straight waveguides and the modes of the circular slotted 
waveguide sections. As a result, the resonator’s resonances are profoundly modified, notably when 
the coupling to the more lossy 1st-order mode is practically eliminated for η = 0.7; in this case, the 
line widths of the fundamental resonances change by more than an order of magnitude. This 
somewhat unexpected effect may be exploited for the construction of highly sensitive sensing 
devices based on properly engineered waveguide-coupled slotted resonator systems. It is even 
conceivable that the asymmetric mode profile within the slot (that can be engineered via the slot’s 
position) will find applications in optomechanical devices. 
 
 

 
Fig. 7. Spectral response of the slotted resonator device depicted in Fig.4 for various slot positions 
within the ring (see Ref. [5] for details on the device parameters). The results of the CMT approach 
are compared with the results of numerically exact DGTD computations. Note the dramatic change 
in resonance line widths when going from η = 0.4 via η = 0.5 to η = 0.7. 
 



A5.6   Busch 

 
 

8 

3. Ongoing Developments 
 
After having established a working CMT approach to waveguide-coupled resonator systems, we are 
now moving to construct a perturbation theoretical approach that will allow us to consider – within 
CMT – the effect of small perturbations on the resonances’ position and linewidths. Clearly, this 
has to be compared with exact numerical results in order to understand its limitations. Once it has 
been established, this perturbation-theory-plus-CMT approach will allow us to develop optimized 
layouts for various purposes such as high-sensitivity sensing etc. 
 
On the methodical side, we still consider DGTD too slow (although it definitely outperforms FDTD 
by a large margin). Therefore, we have embarked on transferring our code to high-performance-
computing systems using graphic processor units (GPUs). The preliminary speedup characteristics 
are reported in Fig. 8. Given that current CPUs feature hexacore processors – for which we could 
parallelize our code via MPI – we estimate that we will eventually end up with a total GPU-speedup 
of a factor of about 10 relative to CPU. 
 

             
 
Fig. 8. Accuracy comparison (left panel) and speedup (right panel) of GPU-based computations 
relative to CPU computations with a single core for a test system. The computations are done with a 
DGTD-code with 4th-order accurate spatial discretization.  
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