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Theory of Photonic Crystals Structures and Concepts for Photonic-Crystal 
based Devices 
 
 
Introduction and Summary 
 
Photonic Crystals provide a novel platform for the realization of compact optical elements and 
novel functionalities. Over the past funding period, the quality of fabrication processes has been 
significantly improved and novel materials and fabrication routes have been explored. Owing to 
similar improvements on the theoretical side, the range of applications of Photonic Crystals has 
been considerably enlarged. This includes, but is certainly not limited to, complex integrated 
photonic circuits for telecommunication and compact sensors as well as novel light sources such as 
low-threshold organic lasing structures, efficient LEDs, and directional thermal emitters. The 
corresponding theoretical challenges are (i) to develop novel simulation methods and tools that are 
capable of treating ever more complex Photonic Crystal structures, (ii) the predictive and/or 
interpretative assistance for experimental work in the areas of material science and spectroscopy, 
and (iii) to develop novel device principles that are exploiting the unique properties of Photonic 
Crystals.  
 
To address the first of these needs, we have considerably extended the photonic Wannier function 
approach into a full-fledged circuit theory [1] that allows us to design rather complex Photonic-
Crystal based functional elements that include electro-optically tunable materials [2,3]. Further, we 
have developed a time-domain variant of the Wannier function approach [4]. Our recent review [5] 
provides an overview of the present state-of-the-art and sketches future research directions, notably 
in conjunction with Green’s functions techniques. In addition, we have equipped our Fourier-
Model-Method (FMM) with absorbing boundary conditions based on complex stretched coordinates 
perfectly-matched layers [6] and the ability to treat internal sources instead of external plane wave 
excitations. While the former allows us to model non-periodic structures, the latter enables the 
investigation of active materials in these systems. For metallic systems, however, it turns out that 
accurate computations require an adaptive spatial resolution for arbitrary geometries of the 
scatterers. This can be accomplished via numerically determined coordinate transformations [7].  
 
Regarding the second and third challenge, we have employed band structure and FMM 
computations in order to provide predictive and interpretative assistance for the fabrication and 
characterization of high-quality three-dimensional Photonic Crystals via holographic lithography 
[8] and direct-laser-writing approaches [9,10] (collaboration with the group of Martin Wegener, see 
report on subproject A1.4). Similarly, we have forged a collaboration with the group of Ulf Peschel 
(University of Erlangen-Nuremberg) in order to investigate polarization-dependent scattering from 
three-dimensional model Photonic Crystals such as opals [11]. Finally, we would like to mention 
that a consortium headed by the group of Ralf Wehrspohn (University of Halle) succeeded in 
demonstrating the feasibility of complex Photonic-Crystal based circuitry by consecutive local 
infiltration of individual pores [3]. In collaboration with Marian Florescu (Princeton University), we 
have developed a microscopic theory of thermal emission in bulk Photonic Crystals in thermal 
equilibrium [12] and have extended this theory to finite-sized systems [13]. The main finding of this 
work is that the thermal emission enhancement is governed by the area of iso-frequency surfaces – 
contrary to the commonly held belief that invokes the optical density of states. The corresponding 
emission characteristics are highly sensitive to the surface termination of the Photonic Crystal. The 
fact that Kirchhoff’s law is a consequence of (and not input to) this theory suggests its extension to 
the treatment of non-equilibrium situations. 
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1. Methodic Developments for the Quantitative Analysis of Photonics Crystal Structures 
 
Significant advances in the fabrication of Photonic Crystal structures allow for the realization of 
ever more complex Photonic-Crystal based circuitry and/or high quality three-dimensional Photonic 
Crystals. Our strategy to meet the correspondingly increasing demands in quantitative simulations 
has been to further develop our photonic Wannier function approach [14] as well as the Fourier 
Modal Method (FMM; sometimes also referred to as the Rigorous Coupled Wave Analysis).  
 
1.1. The Photonic Wannier Function Approach 
 
Since we feel that the modeling, design and optimization of large-scale Photonic Crystal structures 
will quickly place severe demands on general-purpose Maxwell-solvers, we have significantly 
extended the photonic Wannier function approach. This extension consists of improvements in the 
generation of Wannier functions, their application to the construction of Wannier functions for 
Photonic-Crystal membranes and three-dimensional Photonic Crystals, and the realization of 
Wannier-function based circuit theory for complex functional elements in two- and three-
dimensional Photonic Crystals and Photonic-Crystal membranes as well as an efficient time-domain 
version of the Wannier function approach.   
 
1.1.1 Wannier Function Generation 
 
More precisely, we have perfected the construction of maximally localized photonic Wannier 
function based on an adaptation of the method proposed by Souza, Marzari, and Vanderbilt for 
electronic systems [15,16]. In electronic systems, there exists a Fermi level so that for most 
applications only the Wannier functions associated to the electronic bands in the immediate vicinity 
of the Fermi level have to be taken into account. In photonic systems, however, a Fermi level does 
not exist, so that generally more Wannier functions have to be generated that allow for a correct 
representation of the details of the electromagnetic field distributions. In fact, this task may quickly 
become rather challenging, since higher-frequency bands tend to be strongly entangled without 
band gaps separating them into groups. As a result, a significant symmetry mixing between bands 
occurs which impedes the construction of well-localized Wannier functions. Thus, a thorough group 
theoretic preprocessing of the band structure that effectively groups the bands prior to minimization 
becomes a must. This dramatically reduces the number of unknowns. At the same time, advanced 
techniques that efficiently minimize the spread of the Wannier functions can dramatically decrease 
computation times. While the above issues appear to be a rather technical, they are at the heart of 
the entire approach since only a sufficient number of Wannier functions that fully conform to the 
symmetry of the underlying lattice provide quantitative results for functional elements (see the 
description of the circuit theory below). The resulting enhancement in efficiency can easily decrease 
the computational effort by about three orders of magnitude relative to a naïve approach. At the 
same time, this leads to higher-quality Wannier functions.   
 
As an illustration, we provide in Figs. 1 and 2, respectively, examples of photonic Wannier 
functions for two-dimensional macroporous-silicon Photonic Crystals and three-dimensional 
silicon-woodpile Photonic Crystals.  
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Fig.1: Maximally localized photonic Wannier functions related to the 38 lowest bands for H-
polarized light in a two-dimensional Photonic Crystal consisting of a hexagonal array of air pores 
with radius r = 0.45a (a: lattice constant) in a silicon matrix. The value of the out-of-plane 
component of the magnetic field is shown. Each Wannier function is labeled by its band index n 
and, in addition, the group-theoretical labeling is provided. The Wannier functions associated with 
bands 4-9, 10-15, and 18-23 can, respectively, be obtained from the three representative functions 
shown in the center of the figure through successive 60° rotations. 

   
 

 
 
Fig.2: Maximally localized photonic Wannier functions for a three-dimensional woodpile Photonic 
Crystal. The left and middle panel represents, respectively, the Wannier functions for bands three 
and four, whereas the right panel depicts the Wannier function for band ten. Owing to the three-fold 
rotational symmetry of this rhombohedral structure, the Wannier function for band ten occurs three 
times and the missing functions may be obtained via 120° rotations of the band ten Wannier 
function around this symmetry axis. 
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1.1.2 Wannier-function based Photonic Crystal Circuit Theory 
 
The Wannier function approach is ideally suited for the analysis of basic functional elements since 
the Wannier function basis results from a unitary transformation of the underlying Photonic 
Crystal’s Bloch function basis. As a result, the Wannier basis contains the entire information of 
corresponding band structure and – as compared to all-purpose Maxwell-solvers – only a few 
Wannier functions are required to obtain quantitative results. This facilitates the optimization of 
designs for such functional elements [1,3,5]. Despite the advances in computational efficiencies 
offered by this approach, large-scale Photonic-Crystal based circuits still require formidable 
computational resources. Therefore, we have developed a circuit theory [1] that allows us to treat 
large-scale circuits. Basic functional elements are represented through their complex scattering 
amplitudes that connect the modes in the various waveguide ports that terminate the device. Then, a 
complex circuit that consists of an assembly of several basic functional elements can be represented 
by a scattering matrix. In turn, this scattering-matrix can be obtained from the basic elements’ 
scattering matrices by “integrating out” the internally connected ports. This is analogous to the 
Landauer-Büttiker approach for mesoscopic electronic systems or the linear system approach in 
microwave circuit theory. In fact, many complex functional elements contain several copies of just 
a few basic functional elements, albeit with different orientations. This implies that we can reuse the 
scattering matrices of given functional elements if we respect the corresponding symmetries [1]. We 
illustrate this approach in Fig. 3 for a Mach-Zehnder interferometer.  
 
At any rate, the central prerequisite is the usage of Wannier functions whose symmetries conform to 
the symmetries of the underlying Photonic Crystal. Already minor deviations from the correct 
symmetry lead to slightly asymmetric scattering matrices for the basic functional elements which – 
owing to the coherent nature of the coupling between elements – quickly amplify for more complex 
circuits and unphysical behavior develops.  

 
Fig.3: Schematic illustration of the analysis of functional elements within a Wannier-function based 
Photonic Crystal circuit theory. Left panel: A single functional element (here: a waveguide bend) is 
connected to several (here: two) waveguide ports. In the wave guiding regions Ωw (shaded regions), 
the electromagnetic field is described by incoming and outgoing guided modes that are determined 
within a separate Wannier-function computation for the infinite waveguides. In the central region, 
ΩD, the electromagnetic field is directly expanded into Wannier functions. This allows us to 
compute the complex reflection and transmission amplitudes between the modes in the wave 
guiding ports. In essence, this reduces the functional element to a complex scattering matrix. Right 
panel: Complex functional element can often be decomposed into basic functional elements so that 
their scattering matrix can be built up from the scattering matrices of the constituents. Typically, the 
basic functional elements appear multiple times albeit with different orientations. This can be 
accounted for via appropriate symmetry considerations. We display a Mach-Zehnder interferometer 
design which is composed of only two distinct basic functional elements, a waveguide bend (lower 
case S) and a coupler end point (upper case S), which we have optimized separately. 
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1.2. The Fourier Modal Method 
 
At the start of the funding period, we had available an implementation of the basic Fourier Modal 
Method (FMM; sometimes also referred to as the Rigorous Coupled Wave Analysis (RCWA)) for 
two- and three-dimensional layered grating structures [17]. We have applied this method to a 
number of interesting problems [8,9,10,11] (see also section 2.2.). However, as explained in section 
2.2. a significant number of problems of current interest are outside the reach of basic FMM. 
Therefore, we have taken up recent developments pioneered in the group of Philipe Lalanne 
(Institute d’Optique, Palaiseau) and have implemented absorbing boundary conditions based on a 
complex stretched-coordinate formulation [6]. This allows us to surround parts of the unit cell or the 
entire unit cell used in the FMM calculations with perfectly-matched-layer-like boundary 
conditions. As seen from an FMM point-of-view that deals with an infinite array of periodic unit 
cells this procedure effectively decouples the unit cells partly or completely from each other. If we 
now send in an excitation onto this structure, we obtain – from a beam-propagation point of view – 
a fully vectorial, bi-directional eigenmode-based beam propagation algorithm. Furthermore, many 
physical systems require that the emission characteristics of a dipole source embedded in them are 
determined. Consequently, we have further extended the FMM such that we can choose between the 
traditional incoming plane wave excitation and the internal excitation via a point dipole. Since this, 
too, is well documented in the literature [18], we refrain from describing the details. 
 
However, with all these extensions, efficient computations for arrays that contain significant 
amounts of metal are still rather challenging. Here, the equidistant grid implied by the Fast-Fourier-
Transform of the material distribution within a single unit cell leads to stair-casing of rounded 
geometries. In turn, this introduces spurious resonances (actually many small lightning rods that 
constructively or destructively interfere) that are extremely difficult to deal with and simple grid-
refinements (corresponding to more plane waves within FMM) become rather ineffective. One way 
out has been described by Thomas Weiss and coworkers [19]. For specific geometries, they 
constructed analytical coordinate transformation that concentrate coordinate lines near the material 
interfaces. Upon working on equidistant grids in this transformed space, one, therefore, realizes an 
adaptive spatial resolution (ASR). In turn, ASR greatly accelerates convergence or equivalently, for 
a given desired accuracy, considerable reduces the usage of computational resources. However, 
these analytical meshes have two drawbacks. First, the associated coordinate transformation is not 
everywhere differentiable and thus may lead to spurious resonances (albeit very many fewer than in 
the standard FMM approach). Second, it is unclear whether any geometry may be meshed in this 
fashion and even if this were the case, it remains unclear (or at least a horrendously difficult task) 
how to create meshes for more complex geometries. Depending on one’s viewpoint, one may regard 
these issues as some sort of nuisance or as some serious problem for the method. At any rate, it is 
highly desirable to obtain an automated way to numerically determine differentiable meshes for 
arbitrary geometries. We have accomplished this task by developing an appropriate functional that 
allows to adapt coordinates to a given geometry at hand such that the resulting mesh is still 
differentiable [7].  
 
For simple geometries, we obtain comparable results as Thomas Weiss and coworkers [19] and the 
resulting convergence acceleration (or, equivalently, accuracy and efficiency improvements) persist 
also for more complex geometries where it is not obvious how to determine an analytical 
transformation in the first place. We illustrate this behavior in Fig. 4. Here, one should bear in mind 
that the storage and CPU-time requirements for such computations scale, respectively, with the 
square and the cube of the number of plane waves. 
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Fig.4: Upper row: Schematic top view a single unit cell of a square array of gold crescent-shape 
nano-antennas (left panel) and corresponding numerically generated ASR. 
Middle row: Transmittance spectra into the zeroth diffraction order that have been computed within 
standard FMM (blue solid line) using 1257 plane waves, numerical ASR with tangential term (red 
dash-dotted line) using 317 plane wave and numerical ASR without tangential term (cyan dashed 
line) again using 317 plane waves. The computations have used y-polarized incoming radiation 
(curves with pronounced resonances near λ ≈ 1900 nm) as well as x-polarized radiation (curves with 
pronounced resonances near λ ≈ 1100 nm). 
Lower row: Convergence characteristics of the transmittance into the zeroth transmittance. N 
denotes the number of plane wave coefficients used. The computations have been carried out using 
standard FMM (blue open circles), numerical ASR with tangential energy term (red open triangles), 
and numerical ASR without tangential term (cyan open diamond) within FMM. The left panel 
depicts the case of y-polarized excitation at λ = 1900 nm with ε = −175.08+21.43i (gold at λ = 1900 
nm) and the right panel depicts the case of x-polarized excitation at λ = 1100 nm with ε = 
−53.21+4.20i (gold at λ = 1100 nm). 
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2. Predictive and Interpretative Assistance for Experimental Work  
 
The experimental realization of large-scale and high-quality Photonic-Crystal structures represents a 
challenge to state-of-the-art micro-fabrication technologies. Therefore, it is of paramount 
importance to characterize the optical quality of fabricated samples. For thin films, this can readily 
be accomplished via electron microscopy. However, samples with an appreciable thickness have to 
be characterized optically, i.e., their transmission properties have to be determined experimentally 
(preferably with absolute units) and have to be compared with corresponding simulations. Only this 
allows the assessment of the fabricated structures’ quality as well as the identification of problems 
in the fabrication process.  
 
The group of Martin Wegener has perfected the so-called direct laser writing technique, where a 
focused laser beam writes tiny structures (“voxels”) into a film of photo-resist via two-photon 
absorption processes. Moving the focus in a prescribed fashion through the resist thus allows them 
to write essentially arbitrary structures. Clearly, the details depend on the photo-resist, the precise 
shape of the focused laser beam inside the sample and the ability to move the focus within the 
sample (in practice, one rather moves the photo-resist relative to a fixed laser spot). However, the 
resulting polymer templates exhibit an insufficient refractive-index contrast that prevents the 
formation of complete, i.e., three-dimensional photonic band gaps. Consequently, this mandates that 
the polymer templates be replicated into a high-index material such as silicon. Obviously, the many 
processing steps involved in this provide ample opportunities for fabricating structures with 
compromised functionality. Just how much can be determined by comparing experimental data with 
accurate computations on ideal structures. Further, computations on less ideal structures allow one 
to identify (and potentially to remedy) problems in the fabrication process [8]. 
 
With this combined experiment-theory approach, the groups of Martin Wegener and Kurt Busch 
have been able to systematically optimize the fabrication process so that eventually complete 
photonic band gaps at 1.55 µm could be reached [9] and basic functional elements such as straight 
waveguides could be reliably fabricated and characterized [10]. 
 
Polarization-resolved reflection and transmission spectra represent a particularly useful tool for the 
investigation of the quality of three-dimensional Photonic Crystals. Based on this observation, we 
have, in a collaboration with the group of Ulf Peschel (University of Erlangen-Nuremberg), 
demonstrated that the growth-mode of opal-like structures via Langmuir-Blodgett (forced-
assembly) and self-organized approaches exhibit rather different optical properties that render the 
(in certain communities rather well-established) concept of the critical angle of diffraction 
meaningless [11].   
 
 
3. Novel Concepts for Photonic-Crystal based Functional Elements  
 
Besides being of importance for interpreting experimental data, the methodic developments 
described in section 1 allow us to explore novel systems as well as to develop novel operation 
principles for functional elements, including novel functionalities. 
 
3.1 Nonlinear Wave Propagation in Photonic-Crystal Waveguide-Resonator Systems 
 
One of the simplest classes of bistable optical devices that can find applications in photonic 
integrated circuits are two-port devices where the transmission properties to the output waveguide 
depend on the intensity of light sent to the input waveguide. In systems where the two waveguides 
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are directly coupled via an optical resonator, a system with resonant transmission in a narrow 
frequency range is realized. Alternatively, systems with side-coupled cavities exhibit similar 
behavior that is, however, based on resonant reflection. Indeed, both systems may exhibit optical 
bistability when the resonator is made of a Kerr nonlinear material. The resonant two-port devices 
of the first type can be realized in one-dimensional systems and, consequently, they have been 
studied in great details in the context of different applications. In contrast, resonant devices of the 
second type can only be realized in higher-dimensional structures and their functionalities are not 
yet completely understood. For instance, until recently it has been believed that the basic properties 
of devices based on resonators side-coupled to ordinary ridge waveguides are qualitatively identical 
to those of resonators side-coupled to Photonic-Crystal waveguides and that both can be correctly 
described via standard coupled-mode theory for continuous systems. In Fig. 5, we show the results 
of our analyses [20] that illustrate the much richer behavior of waveguide-resonator systems in 
Photonic Crystals as compared to systems based on ordinary waveguide-resonators. The crucial 
point is that the discrete nature of the Photonic Crystal waveguide allows the engineering of 
physically inequivalent coupling-scenarios between the side-coupled cavity and the cavities that 
make up the Photonic Crystal waveguide. This is schematically depicted in the left panel of Fig. 5. 
There, the case (b) shows a strong coupling of the side-coupled cavity Aα to the nearest cavities A0 
and a much weaker coupling to the next-nearest cavities A-1 and A1. This suggests that this case if 
conceptually very close to the case of ordinary coupled-mode theory depicted in case (a), since one 
there, too, assumes a point-like coupling between continuous waveguide and the resonator. 
Consequently, we call this case “on-site coupled” and we have shown that this case can be mapped 
onto standard coupled-mode theory [20]. However, the situation is entirely different in case (c), 
where by construction, the side-coupled cavity Aα experiences identical coupling to the nearest 
cavities A-1 and A1 (we call this the “inter-site coupled” case). In turn, this leads to novel 
interference mechanisms that strongly modify already the linear transmission, notably in the slow 
light regime [20]. In the middle and right panel of Fig. 5, we display the corresponding results of 
realization of cases (b) and (c) in two-dimensional Photonic Crystals.    
 
The anomalously high transmission in the slow-light regime for the inter-site coupled case allows 
for a significant enhancement of the resonator quality factor and, accordingly, a substantial 
reduction of the bistability threshold. As a consequence, we refer to this type of nonlinearity 
enhancement as a geometric enhancement. The possibility for such enhancements is a direct and 
unique consequence of the discreteness of the Photonic Crystal waveguide and is in a sharp contrast 
to similar resonant systems based on ridge waveguides. In Fig. 6, we display the corresponding 
bistability results for the on-site and inter-site coupled systems described in Fig. 5.    
 
The potential of this type of the nonlinearity enhancement may be regarded as an additional 
argument to support the application of Photonic-Crystal devices in integrated photonic circuits. The 
actual experimental realization of such devices would require carefully optimized designs and this 
represents a serious challenge for computations. First, the system is numerically large, i.e., 
comprises many Photonic-Crystal unit cells. Second, the presence of nonlinear materials precludes 
an analysis in the frequency-domain but time-domain simulation in the slow-light regime together 
with the expected large field-enhancements at the cavity require very long simulation times.  
 
These considerations have been a major modification for developing a Wannier-function based 
time-domain simulation tool [4] which still requires further developments before it can be applied to 
the above-described systems. 
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Fig.5: Left panel: Three types of geometries of a straight Photonic-Crystal waveguide that is side-
coupled to a nonlinear optical resonator Aα. Standard coupled-mode theory is based on the 
geometry (a) which ignores effects that are induced by the discreteness of the Photonic-Crystal 
system. For instance, light transmission and bistability behavior are qualitatively different for on-
site (geometry (b)) and inter-site (geometry (c)) locations of the resonator along the Photonic-
Crystal waveguide. Middle and right panel: Linear transmission through with silicon-rod based 
Photonic-Crystal waveguide system with different types of side-coupled resonators. The perfect 
Photonic Crystal waveguide exhibits a slow-light regime for dimensionless frequencies between 
0.37 and 0.38. In this regime the results for on-site and inter-site coupled resonators are 
significantly different so that vastly different bistability behavior can already be anticipated. We 
compare exact numerical results (solid line) with different approximations (dashed and dashed-
dotted lines). For details we refer to Ref. [20]. 

 

 
 
Fig.6: Left panel: Linear transmission spectrum for a silicon-rod based Photonic-Crystal waveguide 
that is side-coupled to a single on-site (a) or inter-site (b) polymer-rod resonator (red open circle) 
with different values of the dielectric constant.  Right panel: Linear transmission spectra, (a), and 
nonlinear bistable transmission, (b), for three distinct silicon-rod based Photonic-Crystal 
waveguides with Kerr-nonlinear polymer rods (red open circles). The corresponding geometries are 
depicted in subfigure (c). Example A represents a close-to-optimal structure with an inter-site 
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coupled resonator whose resonance frequency lies close to the edge of the passing band, i.e., in the 
slow-light regime. Examples B and C represent, respectively, sub-optimal designs with inter- or on-
site coupled resonators whose resonance frequencies lies near the center of the passing band, i.e., 
outside the slow-light regime. The full circles in (a) indicate the frequencies where the transmission 
reaches 80% and that are used for achieving high-contrast bistable behavior. Due to its poor linear 
transmission characteristics, on-site coupled resonators cannot be utilized in the slow light regime.  
 
3.2 Thermal Radiation in Photonic Crystals 
 
From the standard definition of a blackbody system, it follows that for any frequency and direction, 
the flux of the thermal radiation emitted by any material object cannot exceed that emitted by a 
blackbody at the same temperature and placed in the same environment. This definition is 
independent of the nature of both the blackbody object and its electromagnetic environment, and 
does not impose any limit on the amount of thermal radiation emitted by the blackbody. In general, 
the photonic reservoir of the surrounding medium may support photon modes whose distribution 
depends on frequency and propagation direction, and the same blackbody object that in free space 
emits an isotropic thermal flux may inside a Photonic Crystal emit a thermal flux that is enhanced 
or reduced relative to Planck’s law. 
 
We have analyzed the origin of thermal radiation enhancement and suppression inside infinite 
Photonic Crystals [12]. Standard theoretical and experimental studies of the thermal radiation 
emitted by Photonic Crystals consult the spectral dependence of the photonic density-of-states 
(DOS) [21,22] to interpret their findings. While in simple cases this may lead to correct qualitative 
predictions, we have shown that the central quantity that determines the thermal radiation 
characteristics such as intensity and emissive power is the area of the iso-frequency surfaces and 
not the DOS. The basic idea here is that radiation transport via the modes of Photonic Crystals is 
described through the energy current density, which, in turn, is given by a sum of the product of 
group velocity and energy density over all modes. In essence, only the energy density is given by 
the DOS. More precisely, our careful analysis of the radiative properties of a photon gas in an 
infinite photonic crystal in thermal equilibrium [12] shows profound departures from the 
conventional model of a blackbody in free space. For frequencies near van Hove singularities, the 
spectral energy density as well as the thermal radiation flux may exceed the corresponding 
quantities for a blackbody in free space. There are two mechanisms contributing to this 
enhancement. First, similar to a homogeneous dielectric medium, the photonic crystal constitutes 
an optically denser effective medium than free space. The second mechanism originates from the 
strong light scattering that leads to a spectral redistribution of the photonic modes. We have shown 
that the thermal flux must be compounded with an additional factor of the group velocity such that 
the standard interpretation of thermal radiation characteristics in photonic crystals—and other 
strongly scattering systems—via the DOS becomes questionable. Instead, the area of the iso-
frequency surface relative to that of free space becomes the quantity that determines the 
enhancement of blackbody radiation in Photonic Crystal. This is illustrated in Fig. 7, where we 
display the frequency dependence of energy density and spectral hemispherical power length for a 
two-dimensional model system and compare the results to the free space values. Moreover, the 
thermal radiation in Photonic Crystals shows focusing effects along specific crystalline directions, 
which may directly impact future applications.  
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Fig.7: Frequency dependence of the spectral energy density (upper left panel) and the spectral 
hemispherical power (lower left panel) for the free space (continuous line), a homogeneous 
dielectric with dielectric constant equal to 1.52 (dashed-dotted line), and a model Photonic Crystal 
with a long wavelength effective dielectric constant equal to 1.52 (dashed line). The temperature is 
chosen such that the conventional blackbody exhibits a maximum at the frequency of the first van-
Hove singularity of the model system’s density of states at ω = 0.327ω0. The frequencies are 
measure in units of ω0 = 2πc/a, where a denotes the lattice constant of the Photonic Crystal (see 
Ref. [12] for further details). The upper and lower right panels show the enhancement of the 
respective quantities relative to their free space value. 
 

 
Fig.8: Hemispherical spectral emissivity computed from our theory (solid line) and absorptivity 
computed via FMM (symbols) of a two-dimensional model Photonic Crystal emitting into an air 
half-space. Obviously, Kirchhoff’s law is obeyed. 
 
 
To this end, we have extended our analysis to the case of finite Photonic Crystals as well. In this 
case, it is necessary to include the transmission and reflection of radiation at the interface between a 
Photonic Crystal and its surroundings. Simple thermodynamic considerations show that these 
scattering processes must reduce whatever enhanced thermal flux is forming within the Photonic 
Crystal in a manner such that the radiation emitted by the Photonic Crystal into, say, an adjacent 
half space of air is consistent with Kirchhoff’s law. In other words, Kirchhoff’s law which is not 
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directly contained in our theory becomes a consequence for the case of thermal equilibrium. Thus, 
our theory represents a potential starting point for the development of a more sophisticated theory 
that would be able to consider non-equilibrium scenarios. 
 
Besides this more fundamental aspect our theory also allows for the computation of other quantities 
such as directional emissivities and, for instance, facilitates the investigation of just how the surface 
termination of Photonic Crystals may be exploited to construct thermal emitters with desired (or 
prescribed) properties. In Fig. 9, we provide an illustrative example.   
 

 
Fig.9: Directional spectral emissivity from a two-dimensional hexagonal lattice of air pores in a 
silicon dielectric matrix (macroporous silicon Photonic Crystal). The plane of the interface is 
perpendicular to the Γ-M (panel (a)) or the Γ-K direction (panel (c)). The corresponding photonic 
bandstructure is depicted in panel (b). 
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